精英家教网 > 高中数学 > 题目详情
计算:16-x03+3x0=(3x02-3)(0-x0
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:把等式的右边展开,移项后整理求得答案.
解答: 解:∵16-x03+3x0=(3x02-3)(0-x0)=-3x03+3x0
2x03+16=0x03=-8,解得x0=-2.
点评:本题考查了一元三次方程的解法,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,角A、B、C对应的边分别为a、b、c,若asin(
π
2
-C),bsin(
π
2
-B),csin(
π
2
-A)依次成等差数列.
(1)求角B;
(2)如果△ABC的外接圆的面积为π,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=
3x+a
x2+1
是R上的奇函数,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F(1,0),离心率e=
1
2
,过点F的直线l交椭圆于M、N两点,MN的中垂线交y轴于点P,求点P纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,-3),
b
=(-2,4),
c
=(1,5),若表示向量
a
b
、2
b
-
c
d
连接能构成四边形,则向量
d
为(
 
 
).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
x-1
+3x的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面,且AB=2,BC=1,PA=2,E为PD的中点.
(1)求证:面PAB⊥面PBC;
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2tan(2x+φ)是奇函数,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组对应值如表所示,
t(s)00.10.20.30.40.50.60.70.8
Y(cm)-4.0-2.80.02.84.02.80.0-2.8-4.0
则可近似地描述该物体的位移y和时间t之间关系的三角函数为
 

查看答案和解析>>

同步练习册答案