精英家教网 > 高中数学 > 题目详情
设a∈R,函数f(x)=ax2-(2a+1)x+lnx.
(Ⅰ)当a=1时,求f(x)的极值;
(Ⅱ)设g(x)=ex-x-1,若对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.
考点:利用导数研究函数的极值,导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(Ⅰ)当a=1时,函数f(x)=x2-3x+lnx,f(x)=
(2x-1)(x-1)
x
.令f'(x)=0得:x1=
1
2
x2=1
.列出表格即可得出函数的单调性极值;
(II)对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,则有f(x)max≤g(x)min.利用导数分别在定义域内研究其单调性极值与最值即可.
解答: 解:(Ⅰ)当a=1时,函数f(x)=x2-3x+lnx,f′(x)=
2x2-3x+1
x
=
(2x-1)(x-1)
x

令f'(x)=0得:x1=
1
2
x2=1

当x变化时,f'(x),f(x)的变化情况如下表:
x(0,
1
2
)
1
2
(
1
2
,1)
1(1,+∞)
f'(x)+0-0+
f(x)单调递增极大单调递减极小单调递增
因此,当x=
1
2
时,f(x)有极大值,且f(x)极大值=-
5
4
-ln2

当x=1时,f(x)有极小值,且f(x)极小值=-2.
(Ⅱ)由g(x)=ex-x-1,则g'(x)=ex-1,
令g'(x)>0,解得x>0;令g'(x)<0,解得x<0.
∴g(x)在(-∞,0)是减函数,在(0,+∞)是增函数,
即g(x)最小值=g(0)=0.
对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,则有f(x1)≤g(0)即可.
即不等式f(x)≤0对于任意的x∈(0,+∞)恒成立.
f′(x)=
2ax2-(2a+1)x+1
x

(1)当a=0时,f′(x)=
1-x
x
,令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.
∴f(x)在(0,1)是增函数,在(1,+∞)是减函数,
∴f(x)最大值=f(1)=-1<0,
∴a=0符合题意.
(2)当a<0时,f′(x)=
(2ax-1)(x-1)
x
,令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.
∴f(x)在(0,1)是增函数,在(1,+∞)是减函数,
∴f(x)最大值=f(1)=-a-1≤0,
得-1≤a<0,
∴-1≤a<0符合题意.
(3)当a>0时,f′(x)=
(2ax-1)(x-1)
x
,f'(x)=0得x1=
1
2a
x2=1

a>
1
2
时,0<x1<1,令f'(x)>0,解得0<x<
1
2a
或x>1;
令f'(x)<0,解得
1
2a
<x<1

∴f(x)在(1,+∞)是增函数,
而当x→+∞时,f(x)→+∞,这与对于任意的x∈(0,+∞)时f(x)≤0矛盾.
同理0<a≤
1
2
时也不成立.
综上所述:a的取值范围为[-1,0].
点评:本题考查了利用导数研究函数的单调性极值与最值,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考察了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列三个命题:
①有四个相邻侧面互相垂直的棱柱是直棱柱;
②各侧面都是正方形的四棱柱是正方体;
③底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥.
其中真命题的个数是(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈{-1,
1
3
1
2
,2,3},若函数y=xα是定义域为R的奇函数,则α的值为(  )
A、
1
3
,3
B、-1,
1
3
,3
C、-1,3
D、-1,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+x2-8x.
(1)求f(x)的单调区间;
(2)求函数f(x)在[1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(
1
2
)
x
(x≤0)
log2x(x>0)
,若f(m)>2,求实数m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是正交单位向量,如果
OA
=2
e1
+m
e2
OB
=n
e1
-
e2
OC
=5
e1
-
e2
,若A,B,C三点在一条直线上,且m=2n,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是边长为2的正方形,PD⊥底面ABCD,PD=CD,E为PB的中点.
(Ⅰ)求异面直线PA与DE所成的角;
(Ⅱ)在底边AD上是否存在一点F,使EF⊥平面PBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P到点F1(0,-2),F2(0,2)的距离之和为12,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为5的菱形ABCD中,AC=8.现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为
9
25

(1)求证:平面ABD⊥平面CBD;
(2)若M是AB的中点,求三棱锥D-MBC的体积.

查看答案和解析>>

同步练习册答案