精英家教网 > 高中数学 > 题目详情
8.已知集合A={x||x|≤2,x∈R},B={x|$\sqrt{x}$≤4,x∈Z},则A∩B={0,1,2}..

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x||x|≤2,x∈R}={x|-2≤x≤2},
B={x|$\sqrt{x}$≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},
∴A∩B={0,1,2}.
故答案为:{0,1,2}.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若f(x)=$\left\{\begin{array}{l}{lnx,(x>1)}\\{2x+{m}^{3},(x≤1)}\end{array}\right.$,且f(f(e))=10,则m的值为(  )
A.2B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\underset{lim}{n→∞}\frac{4{n}^{2}-1}{2{n}^{2}+3n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合A={x|x≤1},B={x|x≥a},A∪B=R,则a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设α:m+1≤x≤2m+7(m∈R),β:1≤x≤3,若α是β的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.我们定义渐近线:已知曲线C,如果存在一条直线,当曲线C上任意一点M沿曲线运动时,M可无限趋近于该直线但永远达不到,那么这条直线称为这条曲线的渐近线:下列函数:①y=x${\;}^{\frac{1}{3}}$;②y=2x-1;③y=lg(x-1);④y=$\frac{x+1}{2x-1}$;其中有渐近线的函数的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义运算法则如下:a⊕b=$\root{3}{a}$+b-2,a?b=lga2-lg$\sqrt{b}$;若M=27⊕$\frac{\sqrt{2}}{2}$,N=$\frac{\sqrt{2}}{2}$?25,则M+N=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤a(a>0)}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为3,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=($\sqrt{3}$,cos4ωx),$\overrightarrow{b}$=(sin4ωx,1)(ω>0),令f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$且f(x)的周期为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)若x∈[0,$\frac{π}{4}$]时f(x)+m≤2,求实数m的取值范围.

查看答案和解析>>

同步练习册答案