精英家教网 > 高中数学 > 题目详情
3.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若该三棱锥外接球的半径为$\sqrt{3}$,Q是外接球上一动点,则点Q到平面ABC的距离的最大值为(  )
A.3B.2C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

分析 由题意,三棱锥的外接球即为以SA,SB,SC为长宽高的正方体的外接球,求出球心到平面ABC的距离,即可求出点Q到平面ABC的距离的最大值.

解答 解:∵三棱锥S-ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,
∴三棱锥的外接球即为以SA,SB,SC为长宽高的正方体的外接球,
∵该三棱锥外接球的半径为$\sqrt{3}$,
∴正方体的体对角线长为2$\sqrt{3}$,
∴球心到平面ABC的距离为$\frac{1}{2}$×$\frac{2\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$
∴点Q到平面ABC的距离的最大值为$\sqrt{3}$+$\frac{\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$.
故选:D.

点评 本题考查点Q到平面ABC的距离的最大值,考查学生的计算能力,求出球心到平面ABC的距离是关键.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年广东清远三中高二上学期第一次月考数学(理)试卷(解析版) 题型:选择题

已知圆被直线所截得的线段的长度等于2,则等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=cosx•sin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4},x∈R$.
(Ⅰ)求f(x)的最大值;
(Ⅱ)求f(x)的图象在y轴右侧第二个最高点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=\left\{\begin{array}{l}x,0≤x<1\\ \frac{1}{{f({x+1})}}-1,-1<x<0\end{array}\right.$,g(x)=f(x)-4mx-m,其中m≠0.若函数g(x)在区间(-1,1)上有且仅有一个零点,则实数m的取值范围是(  )
A.$m≥\frac{1}{4}$或m=-1B.$m≥\frac{1}{4}$C.$m≥\frac{1}{5}$或m=-1D.$m≥\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥A-BCD中,CD⊥BD,AB=AD,E为BC的中点.
(Ⅰ)求证:AE⊥BD;
(Ⅱ)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆的方程为x2+y2-2x-8=0,设该圆过点(2,1)的最长弦和最短弦分别为AC和BD,
(1)求出|AC|和|BD|
(2)求出四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设(1-2x)n=a0+a1x+a2x2+…+anxn(x∈N*),若a1+a2=30,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,a9=1,S18=0,当Sn取最大值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知首项为$\frac{3}{2}$的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)n+1•n(n∈N*),求数列{an•bn}的前n项和Tn

查看答案和解析>>

同步练习册答案