分析 (1-2x)n=a0+a1x+a2x2+…+anxn=$1+{∁}_{n}^{1}(-2x)$+${∁}_{n}^{2}(-2x)^{2}$+…,可得a1+a2=-2+4×$\frac{n(n-1)}{2}$=30,化简解出即可得出.
解答 解:(1-2x)n=a0+a1x+a2x2+…+anxn=$1+{∁}_{n}^{1}(-2x)$+${∁}_{n}^{2}(-2x)^{2}$+…,
∴a1+a2=-2n+4×$\frac{n(n-1)}{2}$=30,化为n2-2n-15=0,n∈N*.
解得n=5.
故答案为:5.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {an}是单调递减数列 | B. | {Sn}是单调递减数列 | ||
| C. | {a2n}是单调递减数列 | D. | {S2n}是单调递减数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com