精英家教网 > 高中数学 > 题目详情
7.i是虚数单位,则复数$\frac{2i}{2+i}$=(  )
A.-$\frac{2}{5}$+$\frac{4}{5}$iB.$\frac{2}{5}$+$\frac{4}{5}$iC.$\frac{2}{5}$-$\frac{4}{5}$iD.-$\frac{2}{5}$-$\frac{4}{5}$i

分析 直接由复数代数形式的乘除运算化简复数$\frac{2i}{2+i}$,则答案可求.

解答 解:$\frac{2i}{2+i}$=$\frac{2i(2-i)}{(2+i)(2-i)}=\frac{2+4i}{5}=\frac{2}{5}+\frac{4}{5}i$,
故选:B.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.${C}_{200}^{197}$=1313400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$在向量$\overrightarrow{b}$=(1,$\sqrt{3}$)方向上的投影为2,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{a}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{am}满足${a_1}=\frac{3}{2}$,且am+1=3am-1,${b_m}={a_m}-\frac{1}{2}$.
(Ⅰ)求证:数列{bm}是等比数列;
(Ⅱ)若不等式$\frac{{{b_m}+1}}{{{b_{m+1}}-1}}≤m$对?n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果关于x的方程x2-ax+a2-3=0至少有一个正根,则实数a的取值范围是(  )
A.-2<a<2B.$\sqrt{3}<a≤2$C.$-\sqrt{3}<a≤2$D.$-\sqrt{3}≤a≤2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M满足{1,2}⊆M?{1,2,3,4},则集合M的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数y=Asin(ωx-$\frac{π}{3}$)(A>0,ω>0)在区间[0,1]上恰好出现50次最大值和50次最小值,则ω的取值范围是[$\frac{599π}{6}$,$\frac{605π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB边上的中线CM所在直线的方程;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

同步练习册答案