精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-cos2x
,试讨论该函数的奇偶性、周期性以及在区间[0,π]上的单调性.
考点:余弦函数的奇偶性
专题:三角函数的图像与性质
分析:函数即y=|sinx|,画出图象,数形结合可得结论.
解答: 解:因为y=
1-cos2x
=
sin2x
=|sinx|
=
sinx,2kπ≤x≤2kπ+π,k∈Z
-sinx,2kπ+π<x≤2kπ+2π,k∈Z

所以作函数的图象如下:


所以,该函数是偶函数,周期为π.
在区间[0,
π
2
)
上是增函数,在区间[
π
2
,π]
上是减函数,在区间[0,π]上不是单调函数.
点评:本题主要考查正弦函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于事件A,P(A)表示事件A发生的概率.则下列命题正确的是(  )
A、如果P(A∪B)=P(A)+P(B),那么事件A、B互斥
B、如果P(A∪B)=P(A)+P(B)=1,那么事件A、B对立
C、P(A∪B)=P(A)+P(B)=1是事件A、B对立的充要条件
D、事件A、B互斥是P(A∪B)=P(A)+P(B)的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,其前n项Sn满足2SnSn-1=Sn-1-Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn
(Ⅲ)是否存在自然数m,使得对任意n∈N*,都有Tn
1
4
(m-519)成立?若存在,求出m的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,|AF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l的斜率为2,问抛物线C上是否存在一点M,使得MA⊥MB?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
4
x
+clnx,其中c∈R,
(1)当c=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)若f(x)有两个极值点x1和x2,记过点A(x1,f(x1))、B(x2,f(x2))的直线的斜率为k,问是否存在c,使得k=2+c?若存在,求出c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=a,a为正实数,an+1=an-
1
an
(n∈N*)

(1)若a3>0,求a的取值范围;
(2)求证:不存在a,使anan+1>0对任意n∈N*恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C过两个点A(
5
2
,2
3
),B(
5
2
2
,2
2
).
(1)求椭圆C的标准方程;
(2)过点M(2,1)作直线l,交椭圆C于P、Q两点,且M为P、Q的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂对某产品的产量与成本的资料分析后有如下数据:
产量x千件2356
成本y万元78912
(1)画出散点图.
(2)求成本y与产量x之间的线性回归方程
y
=bx+a.(结果保留两位小数)
参考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合Mn={S|S=|i1-i2|+|i3-i4|+…+|i2n-1-i2n|,i1,i2,…,i2n为1,2,…,2n的一个排列},记集合Mn中的元素个数为Card(Mn),例如M1={1},Card(M1)=1;M2={2,4},Card(M2)=2,则(1)M3=
 
;(2)Card(Mn)=
 

查看答案和解析>>

同步练习册答案