精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-lnx,其中a为大于零的常数。
(1)当a=1时,求函数f(x)的单调区间和极值;
(2)当x∈[1,2]时,不等式f(x)>2恒成立,求a的取值范围。
解:(1)当a=1时,
令f'(x)>0得x>1,
令f'(x)<0得0<x<1,
故函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1)
从而f(x)在(0,+∞)上的极小值为
f(x)无极大值。
(2)
f(x)>2在[1,2]上恒成立f(x)在[1,2]上的最小值f(x)min>2
∵a>0
∴令f'(x)=0得
①当时,即0<a≤1时,函数f(x)在[1,2]上递增,
f(x)的最小值为
解得
②当时,即时,函数f(x)在[1,2]上递减,
f(x)的最小值为,无解
③当时,即1<a<4时,函数f(x)在上递减,在上递增,
所以f(x)的最小值为2,无解
综上,所求a的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案