| A. | $\frac{{\sqrt{3}}}{2}π$ | B. | $\frac{3}{2}π$ | C. | 3π | D. | 12π |
分析 根据题意,三棱锥S-ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S-ABC的外接球的表面积.
解答 解:三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,
三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,
∴球的半径R=$\frac{\sqrt{3}}{2}$.
球的表面积为:4πR2=4π•($\frac{\sqrt{3}}{2}$)2=3π.
故选:C.
点评 本题考查三棱锥S-ABC的外接球的表面积,解题的关键是确定三棱锥S-ABC的外接球的球心与半径.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1+4kπ,1+4kπ),k∈Z | B. | (-3+8kπ,1+8kπ),k∈Z | ||
| C. | (-1+4k,1+4k),k∈Z | D. | (-3+8k,1+8k),k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 9 | C. | 18 | D. | 27 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com