精英家教网 > 高中数学 > 题目详情

【题目】已知两点A(﹣1,2),B(m,3).且实数m∈[﹣ ﹣1, ﹣1],求直线AB的倾斜角α的取值范围.

【答案】解:①当m=﹣1时,直线AB倾斜角α= ; ②当m≠﹣1时,直线AB的斜率为
∵m+1∈[﹣ ],
∴k= ∈(﹣∞,﹣ ]∪[ ,+∞),
∴α∈[ )∪( ],
综合①②知,直线AB的倾斜角α∈∈[ ]
【解析】分类讨论,当m=﹣1时,直线AB倾斜角α= ;②当m≠﹣1时,直线AB的斜率为 ,再利用正切函数的单调性求出倾斜角α的范围
【考点精析】掌握直线的倾斜角是解答本题的根本,需要知道当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个的矩形),被截取一角(即), ,平面平面 .

(1)证明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,则m,n所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)求曲线焦点的极坐标,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处的切线与平行.

(1)求的值;

(2)当时,试探究函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0, ),以A,B为焦点且过点D的双曲线的离心率为e1 , 以C,D为焦点且过点A的椭圆的离心率为e2 , 则(
A.随着角度θ的增大,e1增大,e1e2为定值
B.随着角度θ的增大,e1减小,e1e2为定值
C.随着角度θ的增大,e1增大,e1e2也增大
D.随着角度θ的增大,e1减小,e1e2也减小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程; (写一般式)
(2)当直线l的倾斜角为45°时,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,函数f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的单调性(不要求证明);
(2)若有g(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范围.

查看答案和解析>>

同步练习册答案