精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)解不等式f(x)<x+5.
分析:(1)由f(-1)=-2,代入函数解析式得到关于lga与lgb的等式记作①,化简后得到关于a与b的等式记作②,又因为f(x)≥2x恒成立,把f(x)的解析式代入后,令△≤0得到关于lga与lgb的不等式,把①代入后得到关于lgb的不等式,根据平方大于等于0,即可求出b的值,把b的值代入②即可求出a的值;
(2)由(1)求出的a与b的值代入f(x)的解析式中即可确定出f(x)的解析式,然后把f(x)的解析式代入到f(x)<x+5中,得到关于x的一元二次不等式,求出一元二次不等式的解集即可.
解答:解(1)由f(-1)=-2知,lgb-lga+1=0①,所以
a
b
=10
②.
又f(x)≥2x恒成立,f(x)-2x≥0恒成立,
则有x2+x•lga+lgb≥0恒成立,
故△=(lga)2-4lgb≤0,
将①式代入上式得:(lgb)2-2lgb+1≤0,即(lgb-1)2≤0,
故lgb=1即b=10,代入②得,a=100;
(2)由(1)知f(x)=x2+4x+1,f(x)<x+5,
即x2+4x+1<x+5,
所以x2+3x-4<0,
解得-4<x<1,
因此不等式的解集为{x|-4<x<1}.
点评:此题考查学生掌握不等式恒成立时所满足的条件,以及会求一元二次不等式的解集,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案