精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量.若|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=3,试求|3$\overrightarrow{a}$+$\overrightarrow{b}$|的值.

分析 通过向量的模,转化求解向量的数量积,然后求解向量的模.

解答 解:$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量.若|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=3,
可得:9+4-12$\overrightarrow{a}•\overrightarrow{b}$=9,可得cos$<\overrightarrow{a},\overrightarrow{b}>$=$\frac{1}{3}$,
|3$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{9{\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{9+6×\frac{1}{3}+1}$=$2\sqrt{3}$.
|3$\overrightarrow{a}$+$\overrightarrow{b}$|的值为:$2\sqrt{3}$.

点评 本题考查向量的数量积的应用,向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知中心在原点,对称轴为坐标轴的椭圆C的一个焦点F在抛物线y2=4x的准线上,且椭圆C过点$P(1,\frac{3}{2})$,直线与椭圆C交于A,B两个不同点.
(1)求椭圆C的方程;
(2)若直线的斜率为$\frac{1}{2}$,且不过点P,设直线PA,PB的斜率分别为k1,k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x-\sqrt{3}$.
(1)求函数f(x)的单调减区间;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得的图象上各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)在$({-\frac{π}{12},\frac{π}{8}})$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的奇函数f(x)满足f(x-2)=-f(x),且在[0,1]上是增函数,则f($\frac{1}{4}$),f(-$\frac{1}{4}$),f($\frac{3}{2}$)的大小关系是$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值$\frac{1+{i}^{3n}+{i}^{5n}+…+{i}^{25n}}{1•{i}^{3n}•{i}^{5n}•…•{i}^{25n}}$(n∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow{b}$=$({\sqrt{3}cosx,-\frac{1}{2}})$.函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$-2.
(1)求函数f(x)的单调递减区间;
(2)已知a,b,c分别为△ABC内角A,B,C 的对边,其中A为锐角,a=2$\sqrt{3}$,c=4,且f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,…,$\sqrt{m+\frac{m}{t}}=m\sqrt{\frac{m}{t}}$(m,t∈N*且m≥2),若不等式λm-t-3<0恒成立,则实数λ的取值范围为(  )
A.$[2\sqrt{2},+∞)$B.$(-∞,2\sqrt{2})$C.(-∞,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.({t为参数})$被圆x2+y2=9截得的弦长为$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{a}{c}$cosB+$\frac{b}{c}$cosA=$\frac{\sqrt{3}}{2cosC}$
( I)求∠C的大小;
( II)求sinB-$\sqrt{3}$sinA的最小值.

查看答案和解析>>

同步练习册答案