| A. | $[2\sqrt{2},+∞)$ | B. | $(-∞,2\sqrt{2})$ | C. | (-∞,3) | D. | [1,3] |
分析 由等式归纳得出m和t的关系,从而得出关于m的恒等式,利用函数单调性得出最小值即可得出λ的范围.
解答 解:由3=22-1,8=32-1,15=42-1,归纳得t=m2-1,
∵λm-t-3<0恒成立,即λm-m2-2<0恒成立,m∈N*且m≥2,
∴λ<$\frac{{m}^{2}+2}{m}$=m+$\frac{2}{m}$,
令f(m)=m+$\frac{2}{m}$,则f′(m)=1-$\frac{2}{{m}^{2}}$,
∵m≥2,∴f′(m)>0,
∴f(m)单调递增,
∴当m=时,f(m)取得最小值f(2)=3,
∴λ<3.
故选:C.
点评 本题考查了归纳推理,函数恒成立问题与函数最值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 点P必在直线AC上 | B. | 点P必在直线BD上 | ||
| C. | 点P必在平面DBC内 | D. | 点P必在平面ABC外 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 零件数x(个) | 10 | 20 | 30 | 40 | 50 |
| 加工时间y(分钟) | 62 | 68 | 75 | 81 | 89 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com