精英家教网 > 高中数学 > 题目详情
12.某车间需要确定加工零件的加工时间,进行了若干次试验.根据收集到的数据(如表):
零件数x(个)1020304050
加工时间y(分钟)6268758189
由最小二乘法求得回归直线方程$\hat y=0.67x+\hat a$,则$\hat a$的值为54.9.

分析 计算$\overline{x}$、$\overline{y}$,根据回归直线方程过样本中心点($\overline{x}$,$\overline{y}$),求出$\hat a$的值.

解答 解:计算$\overline{x}$=$\frac{1}{5}$×(10+20+30+40+50)=30,
$\overline{y}$=$\frac{1}{5}$×(62+68+75+81+89)=75,
回归直线方程$\hat y=0.67x+\hat a$过样本中心点($\overline{x}$,$\overline{y}$),
∴$\hat a$=$\overline{y}$-0.67$\overline{x}$=75-0.67×30=54.9.
故答案为:54.9.

点评 本题考查了回归直线方程过样本中心点的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,…,$\sqrt{m+\frac{m}{t}}=m\sqrt{\frac{m}{t}}$(m,t∈N*且m≥2),若不等式λm-t-3<0恒成立,则实数λ的取值范围为(  )
A.$[2\sqrt{2},+∞)$B.$(-∞,2\sqrt{2})$C.(-∞,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行如图所示的程序框图,输出的S值等于$\frac{{{2^{10}}-1}}{{{2^{10}}}}$,则判断框内可以填(  )
A.k≤8?B.k≤9?C.k≤10?D.k≤11?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{a}{c}$cosB+$\frac{b}{c}$cosA=$\frac{\sqrt{3}}{2cosC}$
( I)求∠C的大小;
( II)求sinB-$\sqrt{3}$sinA的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,若输出的结果是$\frac{99}{199}$,则判断框内应填的内容是(  )
A.n≤97B.n≤98C.n≤99D.n≤100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-lnx(a∈R).
(Ⅰ)若方程f(x)=0有两根x1,x2,求a的取值范围;
(Ⅱ)在(Ⅰ)的前提下,设x1<x2,求证:$\frac{x_2}{x_1}$随着a的减小而增大;
(Ⅲ)若不等式f(x)≥a恒成立,求证:${(\frac{1}{n})^n}+{(\frac{2}{n})^n}+{(\frac{3}{n})^n}+…+{(\frac{n}{n})^n}<a+\frac{1}{{{e}-a}}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设点M,N为圆x2+y2=9上两个动点,且|MN|=4$\sqrt{2}$,若点P为线段3x+4y+15=0(xy≥0)上一点,则|$\overrightarrow{PM}$+$\overrightarrow{PN}$|的最大值为(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图的程序框图,其作用是输入x的值,输出相应的y值,若x=y,则这样的x值有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Msin(ωx+φ)$(M>0,|φ|<\frac{π}{2},0<ω<3)$图象上的一个最高点为$(\frac{2}{3}π,2)$,函数f(x)图象与y轴交点为(0,1).
(Ⅰ)求M,ω,φ的值;
(Ⅱ)在△ABC中,内角A,B,C所对的边分别是a,b,c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案