分析 利用二倍角公式降幂,然后利用两角和的正弦化积,则答案可求.
解答 解:y=$\sqrt{3}$cos2x+sinxcosx=$\sqrt{3}•\frac{1+cos2x}{2}+\frac{1}{2}sin2x$
=$\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x+\frac{\sqrt{3}}{2}$=$sin(2x+\frac{π}{3})+\frac{\sqrt{3}}{2}$.
∴函数的最大值为$\frac{\sqrt{3}}{2}+1$,最小值为$\frac{\sqrt{3}}{2}-1$,周期为T=$\frac{2π}{2}=π$.
点评 本题考查y=Asin(ωx+φ)型函数的图象和性质,考查两角和与差的正弦,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2ab<$\frac{{a}^{4}-{b}^{4}}{a-b}$<$\frac{a+b}{2}$<b | B. | 2ab<$\frac{a+b}{2}$<$\frac{{a}^{4}-{b}^{4}}{a-b}$<b | ||
| C. | $\frac{{a}^{4}-{b}^{4}}{a-b}$<2ab<$\frac{a+b}{2}$<b | D. | 2ab<$\frac{a+b}{2}$<b<$\frac{{a}^{4}-{b}^{4}}{a-b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{4}$,-$\frac{1}{8}$] | B. | (-$\frac{1}{8}$,-$\frac{1}{16}$) | C. | [-$\frac{1}{8}$,-$\frac{1}{16}$] | D. | (-$\frac{1}{4}$,-$\frac{1}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$π | B. | $\frac{π}{2}$ | C. | $\frac{5}{8}$π | D. | $\frac{7}{8}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com