| A. | $\frac{3}{8}$π | B. | $\frac{π}{2}$ | C. | $\frac{5}{8}$π | D. | $\frac{7}{8}$π |
分析 先求球的半径,再求EF,球心到截面圆的距离,OP,然后求出截面圆的半径,就是图中QP即可得出结论.
解答 解:因为正方体内接于球,所以2R=$\sqrt{{1}^{2}+{1}^{2}+{1}^{1}}$=$\sqrt{3}$,R=$\frac{\sqrt{3}}{2}$,
过球心O和点E、F的大圆的截面图如图所示,
则直线被球截得的线段为QR,过点O作OP⊥QR,垂足为点P,EF=$\frac{\sqrt{6}}{2}$,OF=$\frac{\sqrt{2}}{2}$
OP=$\sqrt{(\frac{\sqrt{2}}{2})^{2}-(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{2}}{4}$,
所以,在△QPO中,QP=$\sqrt{(\frac{\sqrt{3}}{2})^{2}-(\frac{\sqrt{2}}{4})^{2}}$=$\frac{\sqrt{10}}{4}$.
所以所求经过E、F的平面截球O所得的截面的面积的最小值是:$π•(\frac{\sqrt{10}}{4})^{2}$=$\frac{5}{8}π$.![]()
![]()
故选:C.
点评 本题考查组合体的结构特征,球的内接多面体,截面圆的面积,考查空间想象能力,计算能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $±\frac{4}{3}$ | D. | $±\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com