精英家教网 > 高中数学 > 题目详情

 

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

 

 

【答案】

 [解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。

(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。

,得 化简得

故所求点P的轨迹为直线

(2)将分别代入椭圆方程,以及得:M(2,)、N(

直线MTA方程为:,即

直线NTB 方程为:,即

联立方程组,解得:

所以点T的坐标为

(3)点T的坐标为

直线MTA方程为:,即

直线NTB 方程为:,即

分别与椭圆联立方程组,同时考虑到

解得:

(方法一)当时,直线MN方程为:

 令,解得:。此时必过点D(1,0);

时,直线MN方程为:,与x轴交点为D(1,0)。

所以直线MN必过x轴上的一定点D(1,0)。

(方法二)若,则由,得

此时直线MN的方程为,过点D(1,0)。

,则,直线MD的斜率

直线ND的斜率,得,所以直线MN过D点。

因此,直线MN必过轴上的点(1,0)。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案