精英家教网 > 高中数学 > 题目详情
己知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1对,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是( )
A.0
B.0或
C.0或
D.
【答案】分析:由题意可得函数的图象,属性结合可得当直线为图中的m,或n是满足题意,求出其对应的a值即可.
解答:解:由对任意的x∈R,都有f(x+2)=f(x)可知,函数的周期为T=2,
结合函数为偶函数,且当0≤x≤1对,f(x)=x2可作出函数y=f(x)和直线y=x+a的图象,

当直线为图中的直线m,n时,满足题意,易知当直线为m时,过原点,a=0,
当直线为n时,直线与曲线相切,联立,消y可得x2-x-a=0,
由△=1+4a=0可得a=,故a的值为0,或
故选C
点评:本题考查根的存在性与个数的判断,涉及函数的奇偶性与周期性,数形结合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象点的两点,横坐标为
1
2
的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn为数列{an}前n项和,当Tn<m(Sn+1+1)对一切n∈N*都成立时,试求实数m的取值范围.
(3)在(2)的条件下,设bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn为数列{bn}前n项和,证明:Bn
17
52

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象点的两点,横坐标为
1
2
的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2),求Sn

(3)设an=
1
4(Sn+1+1)(Sn+2+1)+1
,Tn为数列{an}前n项和,证明:Tn
17
52

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数数学公式是f(x)图象点的两点,横坐标为数学公式的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若数学公式数学公式,Tn为数列{an}前n项和,当Tn<m(Sn+1+1)对一切n∈N*都成立时,试求实数m的取值范围.
(3)在(2)的条件下,设数学公式,Bn为数列{bn}前n项和,证明:数学公式

查看答案和解析>>

同步练习册答案