¼ºÖªº¯Êýf(x)=log3
3
x
1-x
£¬M(x1£¬y1)£¬N(x2£¬y2)
ÊÇf£¨x£©Í¼ÏóµãµÄÁ½µã£¬ºá×ø±êΪ
1
2
µÄµãPÊÇM£¬NµÄÖе㣮
£¨1£©ÇóÖ¤£ºy1+y2µÄ¶¨Öµ£»
£¨2£©ÈôSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)(n¡ÊN*£¬n¡Ý2)
£¬an=
1
6
£¬n=1
1
4(Sn+1)(Sn+1+1)
£¬n¡Ý2
(n¡ÊN*)
£¬TnΪÊýÁÐ{an}Ç°nÏîºÍ£¬µ±Tn£¼m£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢Ê±£¬ÊÔÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Éèbn=
1
4(Sn+1+1)(Sn+2+1)+1
£¬BnΪÊýÁÐ{bn}Ç°nÏîºÍ£¬Ö¤Ã÷£ºBn£¼
17
52
£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃ£¬x1+x2=1£¬ÓɶÔÊýµÄ¼ÆË㹫ʽ´úÈë¿ÉÇó½á¹û£»£¨2£©ÓÉy1+y2=f£¨x1£©+f£¨x2£©=1¿ÉÖª£¬Ö»ÐèÓõ¹ÐòÏà¼Ó·¨µÄ·½Ê½¼´¿ÉÇóµÃSn£¬½ø¶ø¿ÉµÃan£¬Tn£¬ÏÂÃæÓɺã³ÉÁ¢ÎÊÌâµÄÇ󷨿ɵ㻣¨3£©ÓÉÇ°ÃæµÄ½â´ð¿ÉµÃSn+1=
n
2
£¬Sn+2=
n+1
2
£¬´úÈë¿ÉµÃbn£¬Óɲ»µÈʽµÄ·ÅËõ·¨ºÍÁÑÏîÏàÏû·¨¿ÉÖ¤£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃ£¬x1+x2=1
¡ày1+y2=log3
3
x1
1-x1
+log3
3
x2
1-x2
=log3
3
x1
1-x1
3
x2
1-x2

=log3
3x1x2
1-(x1+x2)+x1x2
=1
£¨2£©ÓÉ£¨1£©Öªµ±x1+x2=1ʱ£¬y1+y2=f£¨x1£©+f£¨x2£©=1
Sn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
   ¢Ù
Sn=f(
n-1
n
)+f(
n-2
n
)+¡­+f(
1
n
)
   ¢Ú
¢Ù+¢ÚµÃSn=
n-1
2
£¬
µ±n¡Ý2ʱ£¬an=
1
4¡Á
n+1
2
n+2
2
=
1
n+1
-
1
n+2

ÓÖµ±n=1ʱ£¬a1=
1
6
Ò²ÊʺÏÉÏʽ£¬¹Êan=
1
n+1
-
1
n+2

¹ÊTn=(
1
2
-
1
3
)+(
1
3
-
1
4
)+¡­+(
1
n+1
-
1
n+2
)
=
n
2(n+2)

¡ßTn£¼m£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢
¼´m£¾
Tn
Sn+1+1
=
n
(n+2)2
ºã³ÉÁ¢£¬
ÓÖ
n
(n+2)2
=
1
n+
4
n
+4
¡Ü
1
8
£¬
ËùÒÔʵÊýmµÄÈ¡Öµ·¶Î§Îª£º£¨
1
8
£¬+¡Þ£©
£¨3£©ÒòΪSn+1=
n
2
£¬Sn+2=
n+1
2
£¬
ËùÒÔbn=
1
4(Sn+1+1)(Sn+2+1)+1
=
1
(n+2)(n+3)+1
£¼
1
n+2
-
1
n+3

¹ÊBn=b1+(
1
4
-
1
5
)+(
1
5
-
1
6
)+¡­+(
1
n+2
-
1
n+3
)

=
1
13
+
1
4
-
1
n+3
£¼
17
52
µãÆÀ£º±¾ÌâΪÊýÁеÄ×ÛºÏÓ¦Óã¬Éæ¼°º¯ÊýÓë²»µÈʽµÄÄÚÈÝ£¬ÆäÖÐÁÐÏîÇóºÍ¼°²»µÈʽµÄ·ÅËõ·¨Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ºÖªº¯Êýf£¨x£©=x2e-x
£¨¢ñ£©Çóf£¨x£©µÄ¼«Ð¡ÖµºÍ¼«´óÖµ£»
£¨¢ò£©µ±ÇúÏßy=f£¨x£©µÄÇÐÏßlµÄбÂÊΪ¸ºÊýʱ£¬ÇólÔÚxÖáÉϽؾàµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÆÕͨ¸ßµÈѧУÕÐÉúÈ«¹úͳһ¿¼ÊÔ(пαê¢ò¾í)ÎÄ¿ÆÊýѧÎÄ¿ÆÊýѧ ÌâÐÍ£º044

¼ºÖªº¯Êýf(X)£½x2e£­x

(¢ñ)Çóf(x)µÄ¼«Ð¡ÖµºÍ¼«´óÖµ£»

(¢ò)µ±ÇúÏßy£½f(x)µÄÇÐÏßlµÄбÂÊΪ¸ºÊýʱ£¬ÇólÔÚxÖáÉϽؾàµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

¼ºÖªº¯Êýf£¨x£©=x2e-x
£¨¢ñ£©Çóf£¨x£©µÄ¼«Ð¡ÖµºÍ¼«´óÖµ£»
£¨¢ò£©µ±ÇúÏßy=f£¨x£©µÄÇÐÏßlµÄбÂÊΪ¸ºÊýʱ£¬ÇólÔÚxÖáÉϽؾàµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÈ«¹úͳһ¸ß¿¼ÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨Ð¿αê¢ò£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¼ºÖªº¯Êýf£¨x£©=x2e-x
£¨¢ñ£©Çóf£¨x£©µÄ¼«Ð¡ÖµºÍ¼«´óÖµ£»
£¨¢ò£©µ±ÇúÏßy=f£¨x£©µÄÇÐÏßlµÄбÂÊΪ¸ºÊýʱ£¬ÇólÔÚxÖáÉϽؾàµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ºÖªº¯Êýf(X) = x2e-x

(I)Çóf(x)µÄ¼«Ð¡ÖµºÍ¼«´óÖµ£»

(II)µ±ÇúÏßy = f(x)µÄÇÐÏßlµÄбÂÊΪ¸ºÊýʱ£¬ÇólÔÚxÖáÉϽؾàµÄÈ¡Öµ·¶Î§.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸