精英家教网 > 高中数学 > 题目详情
12.若$z=\frac{i}{2+i}$,则复数z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:$z=\frac{i}{2+i}$=$\frac{i(2-i)}{(2+i)(2-i)}$=$\frac{1}{5}$+$\frac{2}{5}$i,则复数z对应的点$(\frac{1}{5},\frac{2}{5})$在第一象限.
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设全集U={1,3,5,7},集合A={1,5},则∁UA的子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,则a10=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.复数(m2-5m+6)+(m2-2m)i为纯虚数,则实数m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$)
(Ⅰ)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}|2+lnx|,x>0\\-{x^2}-2x+1,x≤0\end{array}\right.$存在互不相等实数a,b,c,d,有f(a)=f(b)=f(c)=f(d)=m.现给出三个结论:
(1)m∈[1,2);
(2)a+b+c+d∈[e-3+e-1-2,e-4-1),其中e为自然对数的底数;
(3)关于x的方程f(x)=x+m恰有三个不等实根.
正确结论的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知i是虚数单位,复数$\frac{5i}{1-2i}$的虚部为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式 $\frac{x-3}{x+7}<0$的解集是(-7,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数h(t)=-4.9t2+6.5t+10从0到2的平均变化率为(  )
A.-2.2B.-3.3C.2.2D.3.2

查看答案和解析>>

同步练习册答案