精英家教网 > 高中数学 > 题目详情
20.已知直线且l:mx+y+3m-$\sqrt{3}$=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2$\sqrt{3}$,则|CD|=(  )
A.4B.6C.2$\sqrt{3}$D.2$\sqrt{2}$

分析 根据题意,由点到直线的距离求出m,可得直线l的倾斜角为30°,再利用直角三角形中的三角函数求出|CD|即可.

解答 解:根据题意,|AB|=2$\sqrt{3}$,则圆心到直线的距离d=$\sqrt{12-3}$=3,
则有$\frac{|3m-3|}{\sqrt{{m}^{2}+1}}$=3,解可得m=-$\frac{\sqrt{3}}{3}$,
直线l的方程为:(-$\frac{\sqrt{3}}{3}$)x+y-2$\sqrt{3}$=0,则其倾斜角为30°,
∵过A,B分别作l的垂线与x轴交于C,D两点,
则|CD|=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4,
故选:A.

点评 本题考查直线与圆的位置关系,考查弦长的计算,关键是求出m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,a1=1,前n项和为Sn,且an+12-nλ2-1=2λSn,λ为正常数.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{{S}_{n}}{{a}_{n}}$,Cn=$\frac{1}{{S}_{n}}$+$\frac{1}{{S}_{k-n}}$(k,n∈N*,k≥2n+2).
       求证:①bn<bn+1
                 ②Cn>Cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α是第三象限角,则$\frac{α}{2}$是(  )
A.第一象限角B.第二象限角
C.第一或第四象限角D.第二或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定积分${∫}_{0}^{\frac{π}{3}}$(x2+sinx)dx的值为(  )
A.$\frac{{π}^{3}}{81}$+$\frac{1}{2}$B.$\frac{{π}^{3}}{81}$-$\frac{1}{2}$C.$\frac{2π}{3}$-$\frac{1}{2}$D.$\frac{2π}{3}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下5个命题,其中真命题的个数有(  )
①从等高条形图中可以看出两个变量频数的相对大小
②两个随机变量相关性越强,则相关系数r的绝对值越接近于1;
③在回归直线方程$\hat y$=0.2x+12中,当解释变量x每增加一个单位时,预报变量$\hat y$平均增加0.2个单位;
④若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
 ⑤残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,带状区域的宽度越窄,说明拟合精度越高.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦点为F,上顶点为A,若直线AF与圆O:${x^2}+{y^2}=\frac{{3{a^2}}}{16}$相切,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O为坐标原点.
(1)若x=$\frac{3π}{4}$,设点D为线段OA上的动点,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈(0,$\frac{π}{2}$),向量$\overrightarrow m=\overrightarrow{BC}$,$\overrightarrow n=(1-cosx,sinx-2cosx)$,求$\overrightarrow m•\overrightarrow n$的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某舰艇在A处测得遇险渔船在北偏东45°方向上的C处,且到A的距离为10海里,此时得知,该渔船沿南偏东75°方向,以每小时9海里的速度向一小岛靠近,舰艇的速度为21海里/小时,则舰艇到达渔船的最短时间是$\frac{2}{3}$小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若弧长为4的扇形的圆心角为2rad,则该扇形的面积为(  )
A.4B.2C.D.

查看答案和解析>>

同步练习册答案