精英家教网 > 高中数学 > 题目详情

【题目】已知以点 ,且)为圆心的圆与轴交于点 ,与轴交于点 ,其中为坐标原点.

(1)求证: 的面积为定值;

(2)设直线与圆交于点 ,若,求圆的方程.

【答案】(1)见解析;(2) .

【解析】试题分析:(1) 因为圆过原点,所以,设圆的方程是,分别令求出A,B的坐标,代入面积公式即可;(2) 因为 ,所以垂直平分线段,

试题解析:

(1)证明:因为圆过原点,所以

设圆的方程是

,得

,得

所以

的面积为定值.

(2)解:因为

所以垂直平分线段

因为,所以

所以,解得

时,圆心的坐标为 ,此时点到直线的距离,圆与直线相交于两点;

时,圆心的坐标为 ,此时点到直线的距离,圆与直线不相交,所以不符合题意,舍去.

所以所求圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下几个结论中:①在△ABC中,有等式 ②在边长为1的正△ABC中一定有 =
③若向量 =(﹣3,2), =(0,﹣1),则向量 在向量 方向上的投影是﹣2
④与向量 =(﹣3,4)同方向的单位向量是 =(﹣
⑤若a=40,b=20,B=25°,则满足条件的△ABC仅有一个;
其中正确结论的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某种算法的程序,回答下面的问题:
(1)写出输出值y关于输入值x的函数关系式f (x);
(2)当输出的y值小于时,求输入的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若直线与曲线都只有两个交点,证明:这四个交点可以构成一个平行四边形,并计算该平行四边形的面积;

(2)设函数在[1,2]上的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调区间;

(2)当时,若存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC的内角A,B,C的对边分别为a,b,c,且 a=2csinA.
(1)确定角C的大小;
(2)若c= ,且ab=6,求边a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆 )上,设 分别为左顶点、上顶点、下顶点,且下顶点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点 )为椭圆上两点,且满足,求证: 的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数恰有两个极值点,且.

(1)求实数的取值范围;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点 对称,且在区间 上是单调函数,求φ和ω的值.

查看答案和解析>>

同步练习册答案