【题目】已知函数恰有两个极值点,且.
(1)求实数的取值范围;
(2)若不等式恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:(Ⅰ)求出,, ,令, ,由此利用导数性质能求出实数a的取值范围.
(Ⅱ)由(Ⅰ)得, ,两式相减,得, ,从而 ,令,,得,令,则 ,令,则,,由此利用分类讨论思想,结合导数性质能求出实数的取值范围.
试题解析:
(1)因为,
依题意得为方程的两不等正实数根,
∴, ,
令, ,
当时, ;
当时, ,
所以在上单调递增,在上单调递减, ,
当时, ,
所以
∴
解得,
故实数的取值范围是.
(2)由(1)得, , ,两式相加得
,
故
两式相减可得,
故
所以等价于,
所以
所以,
即,
所以,
因为,令,所以
即,令,
则在上恒成立, ,
令,
①当时, 所以在上单调递减,
所以在上单调递增,
所以符合题意
②当时, 所以在上单调递增
故在上单调递减,
所以不符合题意;
③当时,
所以在上单调递增,
所以所以在上单调递减,
故不符合题意
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知以点 (,且)为圆心的圆与轴交于点, ,与轴交于点, ,其中为坐标原点.
(1)求证: 的面积为定值;
(2)设直线与圆交于点, ,若,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点F(m,0),左、右准线分别为l1:x=﹣m﹣1,l2:x=m+1,且l1 , l2分别与直线y=x相交于A,B两点.
(1)若离心率为 ,求椭圆的方程;
(2)当 <7时,求椭圆离心率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,已知椭圆C: =1(a>b>0)的离心率e= ,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中A(3,﹣1),AB边上的中线CM所在直线方程为6x+10y﹣59=0,∠B的平分线方程BT为x﹣4y+10=0.
(1)求顶点B的坐标;
(2)求直线BC的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“石头、剪刀、布”,又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn为等比数列{an}的前n项和且S4=S3+3a3 , a2=9.
(1)求数列{an}的通项公式
(2)设bn=(2n﹣1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com