【题目】已知.
(1)当时,求在处的切线方程;
(2)若存在,使得成立,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析: (1)求出f(x)的导数,可得切线的斜率,由斜截式方程即可得到所求切线的方程;
(2)由题意可得存在x0∈[0,+∞),使得,设,两次求导,判断单调性,对a讨论,分和时,通过构造函数和求导,得到单调区间,可得最值,即可得到所求a的范围.
试题解析:(1)时, ,
, ,
所以在处的切线方程为
(2)存在, ,
即: 在时有解;
设,
令,
所以在上单调递增,所以
1°当时, ,∴在单调增,
所以,所以
2°当时,
设,
令,
所以在单调递减,在单调递增
所以,所以
所以
设, ,
令,
所以在上单调递增,
所以
所以在单调递增,∴,
所以,
所以
所以,当时, 恒成立,不合题意
综上,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】南京市江北新区计划在一个竖直长度为20米的瀑布正前方修建一座观光电梯。如图所示,瀑布底部距离水平地面的高度为60米,电梯上设有一个安全拍照口, 上升的最大高度为60米。设距离水平地面的高度为米, 处拍照瀑布的视角为。摄影爱好者发现,要使照片清晰,视角不能小于。
(1)当米时,视角恰好为,求电梯和山脚的水平距离。
(2)要使电梯拍照口的高度在52米及以上时,拍出的照片均清晰,请求出电梯和山脚的水平距离的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对一批共50件的某电器进行分类检测,其重量(克)统计如下:
质量段 | [80,85) | [85,90) | [90,95) | [95,100] |
件数 | 5 | a | 15 | b |
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A“型2件
(1)从该批电器中任选1件,求其为“B”型的概率;
(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中内角A,B,C的对边分别为a,b,c,向量 =(2sinB,﹣ ), =(cos2B,2cos2 ﹣1)且 ∥ .
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com