精英家教网 > 高中数学 > 题目详情
9.设F1,F2分别为双曲线x2-$\frac{{y}^{2}}{9}$=1的左右焦点,若点P在双曲线上,且∠F1PF2=90°,则|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=(  )
A.$\sqrt{10}$B.2$\sqrt{10}$C.$\sqrt{5}$D.2$\sqrt{5}$

分析 根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可.

解答 解:由双曲线方程得a2=1,b2=9,c2=1+9=10,
即c=$\sqrt{10}$,则焦点为F1(-$\sqrt{10}$,0),F2($\sqrt{10}$,0),
设点P在双曲线C的右支上,且∠F1PF2=90°,
则F1PF2为直角三角形,
则|$\overrightarrow{P{F_1}}$+$\overrightarrow{P{F_2}|}$=|2$\overrightarrow{PO}$|=|F1F2|=2c=2$\sqrt{10}$,
故选:B.

点评 本题主要考查双曲线性质的有意义,根据向量垂直和向量和的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若η服从B(2,p),且Dη=$\frac{4}{9}$,则P(0≤η≤1)=$\frac{5}{9}$或$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设抛物线y2=8x的焦点为F,过点F作直线l与抛物线分别交于A,B两点,若点M满足$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),过M作y轴的垂线与抛物线交于点P,若|PF|=4,则M点的横坐标为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(x+1)lnx-a(x-1).
(1)若函数f(x)在x=e处的切线与y轴相交于点(0,2-e)求a的值;(e为自然对数的底数,e=2.781828…);
(2)当a≤2时,讨论函数f(x)的单调性;
(3)当1<x<2时,证明:$\frac{2}{x-1}>\frac{1}{lnx}-\frac{1}{ln(2-x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.
(Ⅰ)求动点G的轨迹方程;
(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某三棱锥的正视图,侧视图,俯视图如图所示,则该三棱锥的表面积是$4+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(  )
A.48B.32C.16D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c是实数且a≠0,则“-$\frac{b}{a}$>0且$\frac{c}{a}>0$”是“方程ax2+bx+c=0有两正根”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}
(1)求∁R(A∪B);
(2)若A∪C=A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案