精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=(x+1)lnx-a(x-1).
(1)若函数f(x)在x=e处的切线与y轴相交于点(0,2-e)求a的值;(e为自然对数的底数,e=2.781828…);
(2)当a≤2时,讨论函数f(x)的单调性;
(3)当1<x<2时,证明:$\frac{2}{x-1}>\frac{1}{lnx}-\frac{1}{ln(2-x)}$.

分析 (1)求函数的导数,根据导数的几何意义即可求出函的切线斜率,即可求得a的值;
(2)求导数,构造辅助函数g(x)=lnx+$\frac{1}{x}$+1-a,求导,令g′(x)=0,求得g(x)的最小值,判断f′(x)≥0,可判断函数的单调性;
(3)由(2)知f(x)在(1,2)上是增函数,可知(x+1)lnx>2(x-1),即$\frac{1}{lnx}$<$\frac{x+1}{2(x-1)}$利用函数的单调性,求得-$\frac{1}{ln(2-x)}$<$\frac{3-x}{2(x-1)}$,根据对数函数的运算即可证明不等式成.

解答 解:(1)f′(x)=lnx+$\frac{1}{x}$+1-a,x∈(0,+∞)
由题意可知:$\frac{f(e)-f(2-e)}{e-0}$=f′(e),
整理得:e+1-a(e-1)-(2-e)=e(1+$\frac{1}{e}$+1-a),解得a=2;
(2))f′(x)=lnx+$\frac{1}{x}$+1-a,记g(x)=lnx+$\frac{1}{x}$+1-a,
g′(x)=$\frac{x-1}{{x}^{2}}$,令g′(x)=0,x=1,
∴g(x)min=g(1)=2-a,
∵a≤2,
∴2-a≥0,
∴g(x)≥g(1)=0,f′(x)≥0,
∴函数f(x)的定义域上为增函数;
(3)证明:由(2)知当a=2时,f(x)在(1,2)上是增函数,
∴f(x)>f(1)=0,即(x+1)lnx>2(x-1),
∴$\frac{1}{lnx}$<$\frac{x+1}{2(x-1)}$,①
∵1<x<2,
∴0<2-a<1,$\frac{1}{2-x}>1$,
∴$\frac{1}{ln\frac{1}{2-x}}$<$\frac{\frac{1}{2-x}+1}{2(\frac{1}{2-x}-1)}$=$\frac{3-x}{2(x-1)}$,
即-$\frac{1}{ln(2-x)}$<$\frac{3-x}{2(x-1)}$,②
①+②得:$\frac{1}{lnx}$-$\frac{1}{ln(2-x)}$<$\frac{x+1}{2(x-1)}$+$\frac{3-x}{2(x-1)}$=$\frac{2}{x-1}$
∴原式成立.

点评 本题考查运用导数思想求切线的斜率、单调区间和极值,同时考查构造函数求导数,判断单调性,运用单调性证明不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若等边三角形ABC任一底边上的高为$\sqrt{3}$,平面上任意一点P满足$\overrightarrow{CP}$=$\frac{1}{3}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{CA}$,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(文)已知 F1、F2为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点,若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x-alnx(a∈R).
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)若对于x∈(1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积与其外接球的体积之比为(  )
A.1:3πB.$\sqrt{3}:π$C.$1:3\sqrt{3}π$D.$1:\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点P为抛物线C:y2=4x上一点,记P到此抛物线准线l的距离为d1,点P到圆x2+y2+4x+8y+16=0上的点的距为d2,则d1+d2的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2分别为双曲线x2-$\frac{{y}^{2}}{9}$=1的左右焦点,若点P在双曲线上,且∠F1PF2=90°,则|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=(  )
A.$\sqrt{10}$B.2$\sqrt{10}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.C.$\frac{8\sqrt{2}π}{3}$D.$\frac{4\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=logcos1(sinx)的单调递增区间是[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z).

查看答案和解析>>

同步练习册答案