精英家教网 > 高中数学 > 题目详情
8.(文)已知 F1、F2为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点,若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,求双曲线的离心率.

分析 根据双曲线的定义,结合直角三角形的边长关系建立方程进行求解即可.

解答 解:由题意知,|AF1|-|AF2|=2a,
又|AF1|=3|AF2|,
∴|AF1|=3a,|AF2|=a,
$\begin{array}{l}∵∠F_1AF_2={90^0}\\∴{|{AF_1}|^2}+{|{AF_2}|^2}={|{F_1F_2}|^2}\end{array}$
即(3a)2+a2=2c2
即5a2=2c2
∴$e=\frac{c}{a}═\frac{{\sqrt{10}}}{2}$

点评 本题主要考查双曲线离心率的计算,根据双曲线的定义和直角三角形的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,∠A=60°,a=$\sqrt{15}$,b=4,那么满足条件的△ABC(  )
A.有一个解B.有两个解C.无解D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若η服从B(2,p),且Dη=$\frac{4}{9}$,则P(0≤η≤1)=$\frac{5}{9}$或$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx+x2-1
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)>(a+1)lnx+ax-1在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx,g(x)=x-2.
(1)设h(x)=f(x)-g(x),求h(x)的单调区间;
(2)设m∈Z,当x>1时,不等式m•g(x+1)-x•f(x)<x,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x2-2x)•lnx+ax2+2.
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)设函数g(x)=f(x)-x-2,
①当a=1时,若1<x≤e,g(x)≤m恒成立,求m的取值范围
②若g(x)有且仅有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设抛物线y2=8x的焦点为F,过点F作直线l与抛物线分别交于A,B两点,若点M满足$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),过M作y轴的垂线与抛物线交于点P,若|PF|=4,则M点的横坐标为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(x+1)lnx-a(x-1).
(1)若函数f(x)在x=e处的切线与y轴相交于点(0,2-e)求a的值;(e为自然对数的底数,e=2.781828…);
(2)当a≤2时,讨论函数f(x)的单调性;
(3)当1<x<2时,证明:$\frac{2}{x-1}>\frac{1}{lnx}-\frac{1}{ln(2-x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c是实数且a≠0,则“-$\frac{b}{a}$>0且$\frac{c}{a}>0$”是“方程ax2+bx+c=0有两正根”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案