分析 由0<cos1<1,得外函数y=logcos1t在定义域内单调递减,再求出内函数t=sinx的减区间,取使t大于0的部分得答案.
解答 解:令t=sinx,
∵0<cos1<1,
∴外函数y=logcos1t在定义域内单调递减,
又sinx>0,
∴当x∈[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z)时,内函数t=sinx大于0且单调递减,
∴函数f(x)=logcos1(sinx)的单调递增区间是[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z),
故答案为:[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z).
点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | nn | B. | (n-1)n | C. | nn-1 | D. | xn |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos2y成立 | |
| B. | 存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin2y成立 | |
| C. | 存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos3y成立 | |
| D. | 存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin3y成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com