精英家教网 > 高中数学 > 题目详情
1.已知O是锐角△ABC的外接圆圆心,∠A=30°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=2m•$\overrightarrow{AO}$,则m的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{2}$C.1D.$\frac{1}{2}$

分析 根据向量的三角形法则结合向量数量积的运算进行化简求解即可.

解答 解:∵$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=2m•$\overrightarrow{AO}$,
∴$\frac{cosB}{sinC}$•($\overrightarrow{OB}$-$\overrightarrow{OA}$)+$\frac{cosC}{sinB}$•($\overrightarrow{OC}$-$\overrightarrow{OA}$)=2m•$\overrightarrow{AO}$,
即$\frac{cosB}{sinC}$•($\overrightarrow{OB}$-$\overrightarrow{OA}$)•$\overrightarrow{OA}$+$\frac{cosC}{sinB}$•($\overrightarrow{OC}$-$\overrightarrow{OA}$)•$\overrightarrow{OA}$=2m•$\overrightarrow{AO}$•$\overrightarrow{OA}$,
则$\frac{cosB}{sinC}$•($\overrightarrow{OB}$•$\overrightarrow{OA}$-$\overrightarrow{OA}$•$\overrightarrow{OA}$)+$\frac{cosC}{sinB}$•($\overrightarrow{OC}$•$\overrightarrow{OA}$-$\overrightarrow{OA}$•$\overrightarrow{OA}$)=2m•$\overrightarrow{AO}$•$\overrightarrow{AO}$,
即$\frac{cosB}{sinC}$•|$\overrightarrow{OA}$|2(cos2C-1)+$\frac{cosC}{sinB}$•|$\overrightarrow{OA}$|2(cos2B-1)=-2m|$\overrightarrow{OA}$|2
即$\frac{cosB}{sinC}$•(cos2C-1)+$\frac{cosC}{sinB}$•(cos2B-1)=-2m,
则-2cosBsinC-2cosCsinB=-2m,
即-2sin(B+C)=-2m,
则m=sin(B+C)=sinA=sin30°=$\frac{1}{2}$,
故选:D.

点评 本题主要考查向量数量积的运算以及向量三角形法则的应用,考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$|\overrightarrow a|=2|\overrightarrow b|,|\overrightarrow b|≠0$,且关于x的函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}+\overrightarrow a•\overrightarrow bx$在R上有极值,则$\overrightarrow a$与$\overrightarrow b$的夹角范围为(  )
A.$[0,\frac{π}{6})$B.$(\frac{π}{6},π]$C.$(\frac{π}{3},\frac{2π}{3}]$D.$(\frac{π}{3},π]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于数列A:a1,a2,…,an,经过变换T:交换A中某相邻两段的位置(数列A中的一项或连续的几项称为一段),得到数列T(A).例如,数列A:a1,…,ai,$\underbrace{{a_{i+1}},…,{a_{i+p}}}_M,\underbrace{{a_{i+p+1}},…,{a_{i+p+q}}}_N,{a_{i+p+q+1}},…,{a_n}$(p≥1,q≥1)
经交换M,N两段位置,变换为数列T(A):a1,…,ai,$\underbrace{{a_{i+p+1}},…,{a_{i+p+q}}}_N,\underbrace{{a_{i+1}},…,{a_{i+p}}}_M,{a_{i+p+q+1}},…,{a_n}$.
设A0是有穷数列,令Ak+1=T(Ak)(k=0,1,2,…).
(Ⅰ)如果数列A0为3,2,1,且A2为1,2,3.写出数列A1;(写出一个即可)
(Ⅱ)如果数列A0为9,8,7,6,5,4,3,2,1,A1为5,4,9,8,7,6,3,2,1,A2为5,6,3,4,9,8,7,2,1,A5为1,2,3,4,5,6,7,8,9.写出数列A3,A4;(写出一组即可)
(Ⅲ)如果数列A0为等差数列:2015,2014,…,1,An为等差数列:1,2,…,2015,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某科技兴趣小组需制作一个面积为$2\sqrt{2}$平方米,底角为45°的等腰梯形构件,则该梯形构件的周长的最小值为8米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个盒子中装有5张卡片,每张卡片上编有一个数字,分别是1,2,3,4,5,现从盒子中随机抽取卡片
(Ⅰ)若一次抽取3张卡片,求所抽取的三张卡片的数字之和大于9的概率
(Ⅱ)若从编号为1、2、3、4的卡片中抽取,第一次抽一张卡片,放回后再抽取一张卡片,求两次抽取至少一次抽到数字3的卡片的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.各项均为正整数的数列a1,a2,a3,a4中,前三项依次成公差为d(d>0)的等差数列,后三项依次成公比为q的等比数列,若a4-a1=28,则q的所有可能的值构成的集合为{$\frac{3}{2}$,$\frac{10}{9}$}..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z=1+2i的实部与虚部分别为(  )
A.1,2B.1,2iC.2,1D.2i,1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=x2-ax-6a,其中a是常数.
(1)若f(x)<0的解集是{x|-3<x<6},求a的值,并解不等式$\frac{f(x)}{x-a}$≥0.
(2)若不等式f(x)<0有解,且解区间长度不超过5个长度单位,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$f(x)=2cos(x+\frac{π}{6})+2sinx(x∈R)$
(1)求函数f(x)的单调递减区间;
(2)若f(x)=$\frac{8}{5}$,求$cos(2x-\frac{π}{3})$的值.

查看答案和解析>>

同步练习册答案