精英家教网 > 高中数学 > 题目详情
在三角形ABC中,若bcosC=(2a-c)cosB.
(1)求角B的大小;  
(2)若b=
7
,a+c=4,求三角形ABC的面积.
分析:(1)三角形ABC中,由余弦定理可得 cosB和cosC的解析式,代入bcosC=(2a-c)cosB化简可得 a2+c2-b2=ac,可得cosB的值,从而得到B的值.
(2)若b=
7
,a+c=4,代入a2+c2-b2=ac,求得ac的值,从而求得三角形ABC的面积
1
2
ac•sinB 的值.
解答:解:(1)三角形ABC中,由余弦定理可得 cosB=
a2+c2-b2
2ac
,cosC=
a2+b2-c2
2ab

代入bcosC=(2a-c)cosB可得 a2+c2-b2=ac ①,∴cosB=
1
2
,B=
π
3

(2)若b=
7
,a+c=4,代入①可得 a2+c2-7=(a+c)2-2ac-7=16-2ac-7=ac,
∴ac=3.
∴三角形ABC的面积为
1
2
ac•sinB=
1
2
×3×
3
2
=
3
3
4
点评:本题主要考查余弦定理的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,若c=2,b=3,∠A=30°,则三角形的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若a、b、c成等比数列,且c=
3
2
a
,则2cosB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)在三角形ABC中,若角A、B、C所对的三边a、b、c成等差数列,则下列结论中正确的是
①③④
①③④

①b2≥ac;  ②
1
a
+
1
c
2
b
;   ③b2
a2+c2
2
;   ④tan2
B
2
≤tan
A
2
tan
C
2

查看答案和解析>>

同步练习册答案