精英家教网 > 高中数学 > 题目详情
在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.
分析:应用正弦定理和已知条件可得
cosA
cosB
=
sinA
sinB
,进而得到sin(A-B)=0,故有A-B=0,得到△ABC为等腰三角形.
解答:解:∵在△ABC中,acosB=bcosA,
a
b
cosA
cosB
,又由正弦定理可得
a
b
=
sinA
sinB

cosA
cosB
sinA
sinB
,sinAcosB-cosAsinB=0,sin(A-B)=0.
由-π<A-B<π 得,A-B=0,
则△ABC为等腰三角形,
点评:本题考查了三角形的形状判断,涉及的知识有正弦定理,两角和与差的正弦函数公式,以及正弦函数的图象与性质,根据三角函数值求角的大小,推出sin(A-B)=0 是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,若bcosC=(2a-c)cosB.
(1)求角B的大小;  
(2)若b=
7
,a+c=4,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若c=2,b=3,∠A=30°,则三角形的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若a、b、c成等比数列,且c=
3
2
a
,则2cosB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)在三角形ABC中,若角A、B、C所对的三边a、b、c成等差数列,则下列结论中正确的是
①③④
①③④

①b2≥ac;  ②
1
a
+
1
c
2
b
;   ③b2
a2+c2
2
;   ④tan2
B
2
≤tan
A
2
tan
C
2

查看答案和解析>>

同步练习册答案