精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
(1)抛物线的焦点为,准线方程为,……1分
∴      ①                 …………………2分
又椭圆截抛物线的准线所得弦长为, 
∴ 得上交点为,∴    ② ……………3分
由①代入②得,解得(舍去),
从而                          ……………5分
∴  该椭圆的方程为                   …………6分
(2)∵ 倾斜角为的直线过点
∴ 直线的方程为,即,  …………7分
由(1)知椭圆的另一个焦点为,设关于直线对称,                             …………8分
则得  解得,即 ……10分  
满足,故点在抛物线上。     ……………11分
所以抛物线上存在一点
使得关于直线对称。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)如图,点为圆形纸片内不同于圆心的定点,动点在圆周上,将纸片折起,使点与点重合,设折痕交线段于点.现将圆形纸片放在平面直角坐标系中,设圆,记点的轨迹为曲线.
⑴证明曲线是椭圆,并写出当时该椭圆的标准方程;
⑵设直线过点和椭圆的上顶点,点关于直线的对称点为点,若椭圆的离心率,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过点的椭圆的离心率为,椭圆与轴交于两点,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点
(1)当直线过椭圆的右焦点时,求线段的长;
(2)当点异于点时,求证:为定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率,则的值为:                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,右焦点为是椭圆上三个不同的点,则“成等差数列”是“”的( )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆与双曲线有相同的焦点,则的值是
A.B.1或-2C.1或D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线x轴相交于定点
(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆的长轴长,短轴长,离心率依次是( )
A.5, 3, B.10, 6, C.5, 3 , D.10, 6,

查看答案和解析>>

同步练习册答案