精英家教网 > 高中数学 > 题目详情
某家具厂生产甲、乙两种品牌的组合柜,每种柜制成白坯(成品而未油漆)的工时、油漆工时及有关数据如下表:(利润单位元)
产品
时间
工艺要求
能力台时/天
制白坯时间 6 12 120
油漆时间 8 4 64
单位利润 200 240
问:该厂每天生产甲、乙这两种组合柜各多少个,才能获得最大的利润?最大利润是多少?
考点:简单线性规划的应用
专题:应用题,不等式的解法及应用
分析:设生产甲、乙两种型号的组合柜分别为x个、y个,利润为Z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值,从而求出所求.
解答: 解:设生产甲、乙两种型号的组合柜分别为x个、y个,利润为Z元,
那么
6x+12y≤120
8x+4y≤64
x∈N
y∈N
①…(1分)
目标函数为 z=200x+240y…(2分)
作出二元一次不等式①所表示的平面区域(阴影部分)即可行域.把z=200x+240y变形为y=-
5
6
x+
1
240
z,得到斜率为-
5
6
,在轴上的截距为
1
240
z,随z变化的一族平行直线.
如图可以看出,当直线y=-
5
6
x+
1
240
z经过可行域上M时,截距
1
240
z最大,即z最大.          …(6分)
解方程组
6x+12y=120
8x+4y=64

得A的坐标为x=4,y=8                     …(7分)
所以zmax=200x+240y=2720.
答:该公司每天生产生产甲、乙两种型号的组合柜分别为4个、8个,能够产生最大的利润,最大的利润是2720元.
点评:本题主要考查了简单线性规划的应用,以及平面区域图的画法和二元一次不等式组的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若z1=(m2+m+1)+(m2+m-4)i,m∈R,z2=3-2i,则m=1是z1=z2的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}
(1)若a1=1,an=3an-1+1,求an
(2)若Sn=2n2-3n+1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

菱形ABCD中,∠BAD=60°,AB=4,且AC∩BD=M,现将三角形BD沿着BD折起形成四面体SBCD,如图所示.
(Ⅰ)当∠SMC为多大时,SM⊥面BCD?并证明;
(Ⅱ)在(Ⅰ)的条件下,求点D到面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点O是面积为4的△ABC内部一点,且有
OA
+
OB
+2
OC
=
0
,则△AOC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.数列{bn}的前n项和为Rn,Rn=1-
1
2n
,(n∈N*),
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1,5,-1),
b
=(-2,3,5).
(1)当(λ
a
+
b
)∥(
a
-3
b
)时,求λ的值;
(2)当(
a
-3
b
)⊥(λ
a
+
b
)时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-cos2x,2),
b
=(2,2-
3
sin2x),函数f(x)=
a
b
-4.
(Ⅰ)若x∈[0,
π
2
],求f(x)的最大值并求出相应x的值;
(Ⅱ)若将f(x)图象上的所有点的纵坐标缩小到原来的
1
2
倍,横坐标伸长到原来的2倍,再向左平移
π
3
个单位得到g(x)图象,求g(x)的最小正周期和对称中心;
(Ⅲ)若f(α)=-1,α∈(
π
4
π
2
),求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆O1,圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,
(1)把圆O1,圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的极坐标方程.

查看答案和解析>>

同步练习册答案