精英家教网 > 高中数学 > 题目详情
圆O1,圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,
(1)把圆O1,圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的极坐标方程.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)利用x=ρcosθ、y=ρsinθ把圆O1,圆O2的极坐标方程化为直角坐标方程.
(2)把2个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.
解答: 解:(1)圆O1的极坐标方程为ρ=4cosθ,即 ρ2=4ρcosθ,化为直角坐标方程为 (x-2)2+y2=4,
圆O2的极坐标方程ρ=-4sinθ,即 ρ2=-4ρsinθ,化为直角坐标方程为 x2+(y-2)2=4.
(2)把2个圆的直角坐标方程相减可得公共弦所在的直线方程为 x+y=0,化为极坐标方程为 θ=
4
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某家具厂生产甲、乙两种品牌的组合柜,每种柜制成白坯(成品而未油漆)的工时、油漆工时及有关数据如下表:(利润单位元)
产品
时间
工艺要求
能力台时/天
制白坯时间 6 12 120
油漆时间 8 4 64
单位利润 200 240
问:该厂每天生产甲、乙这两种组合柜各多少个,才能获得最大的利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+
3
bc.
(Ⅰ)求A;
(Ⅱ)设a=
3
,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点,
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB取最小值时,求直线l的方程;
(3)当直线l的倾斜角为45°时,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线段PQ的端点Q的坐标是(4,3),端点P在圆x2+y2+2x-3=0上运动,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值,写出计算过程
(1)4x
1
4
(-3x
1
4
y-
1
3
)÷(-6x-
1
2
y-
2
3
);
(2)(lg5)2+lg50•lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,向量
m
=(2sinB,
3
),
n
=(2cos2
B
2
-1,cos2B),且
m
n

(Ⅰ)求B;
(Ⅱ)求f(x)=sin2xcosB-cos2xsinB的单调减区间;
(Ⅲ)若sinC=
2
3
,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2,PA=1.
(Ⅰ)求证:平面PBC⊥平面PAB;
(Ⅱ)求点C到平面PBD的距离.
(Ⅲ)求PC与平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2-10x-10y=0,x2+y2+6x-2y-40=0公共弦长为
 

查看答案和解析>>

同步练习册答案