解:
(I)证明:在Rt△ABC中,D为AB的中点,得AD=CD=DB,
又∠B=30°,得△ACD是正三角形,
又E是CD的中点,得AF⊥CD.
折起后,AE⊥CD,EF⊥CD,
又AE∩EF=E,AE?平面AED,EF?平面AEF,
故CD⊥平面AEF,
又CD?平面CDB,
故平面AEF⊥平面CBD.
(II)过点A作AH⊥EF,垂足H落在FE的延长线,
因为CD⊥平面AEF,所以CD⊥AH,
所以AH⊥平面CBD.
连接CH并延长交BD的延长线于G,
由已知AC⊥BD,得CH⊥BD,可得BD垂直于面AHC,从而得到BD垂直于线CG
可得∠CGB=90°,
因此△CEH∽△CGD,
则
,
设AC=a,易得
∠GDC=60°,DG=
,
代入上式得EH=
,
又EA=![]()
故cos∠HEA=
.
又∵AE⊥CD,EF⊥CD,
∴∠AEF即为所求二面角的平面角,
故二面角A-CD-B大小的余弦值为-
.
科目:高中数学 来源: 题型:
| 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 2 |
| DM |
| DN |
查看答案和解析>>
科目:高中数学 来源: 题型:
A、(0,
| ||||
B、(
| ||||
C、(
| ||||
| D、(2,4] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com