精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*),数列{bn}满足bn=2nan
(Ⅰ)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)设cn=log2
n
an
,数列{
2
cncn+2
}的前n项和为Tn,求满足Tn
25
21
(n∈N*)的n的最大值.
考点:数列与不等式的综合
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用“当n≥2时,an=Sn-Sn-1”及其等差数列的通项公式即可得出.
(Ⅱ)先求通项,再利用裂项法求和,进而解不等式,即可求得正整数n的最大值.
解答: (Ⅰ)证明:∵Sn=-an-(
1
2
n-1+2(n∈N+),当n≥2时,Sn-1=-an-1-(
1
2
n-2+2(n∈N+),
∴an=Sn-Sn-1=-an+an-1+(
1
2
n-1
化为2nan=2n-1an-1+1.
∵bn=2nan.∴bn=bn-1+1,即当n≥2时,bn-bn-1=1.
令n=1,可得S1=-a1-1+2=a1,即a1=
1
2

又b1=2a1=1,∴数列{bn}是首项和公差均为1的等差数列.
于是bn=1+(n-1)•1=n=2nan
∴an=
n
2n

(Ⅱ)解:∵cn=log2
n
an
=n,
2
cncn+2
=
1
n
-
1
n+2

∴Tn=(1-
1
3
)+(
1
2
-
1
4
)+…(
1
n
-
1
n+2
)=1+
1
2
-
1
n+1
-
1
n+2

由Tn
25
21
,得1+
1
2
-
1
n+1
-
1
n+2
25
21
,即
1
n+1
+
1
n+2
13
42

∵f(n)=
1
n+1
+
1
n+2
单调递减,f(4)=
9
20
,f(5)=
13
24

∴n的最大值为4.
点评:本题综合考查了“当n≥2时,an=Sn-Sn-1”及其等差数列的通项公式、“裂项法”等基础知识与基本方法,考查恒成立问题,正确求通项与数列的和是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
3
2
n(n+1),n∈N*
(1)求数列{an}的通项公式;
(2)若bn满足an=3log2bn,求数列{bn}的前n项和为Tn
(3)设cn=
9
anan+1
,Rn是数列{cn}的前n项和,求证:
1
2
≤Rn<1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|1<x<7},A={x|2≤x<5},B={x|3x-7≥8-2x}求A∩B及∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sinxcosx+2cos2x,(x∈R).
(1)求函数f(x)的最小正周期和对称中心坐标;
(2)若A为锐角三角形ABC的最大角,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
在同一平面内,且
a
=(-1,2).
(1)若
c
=(m-1,3m),且
c
a
,求m的值;
(2)若|
a
-
b
|=3,且(
a
+2
b
)⊥(2
a
-
b
),求
a
-
b
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:
编号A1A2A3A4A5A6A7A8A9A10
直径1.521.471.481.511.491.511.471.461.511.47
其中直径在区间[1.48,1.52]内的零件为一等品.
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件不是一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(i)用零件的编号列出所有可能的抽取结果;
(ii)求这2个零件直径均大于1.50的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C与椭圆
x2
8
+
y2
4
=1有相同的焦点,直线y=
3
x为C的一条渐近线.求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x1)成立,则称为
.
W
函数,下面四个命题:
①若函数f(x)为
.
W
函数,则f(0)=0;
②函数f(x)=2x-1,x∈[0,1],是
.
W
函数;
.
W
函数f(x)一定不是单调函数;
④若函数f(x)是
.
W
函数,假设存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0则f(x0)=x0
其中真命题是:
 
.(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心与点M(1,-1)关于直线x-y+1=0对称,并且圆C与x-y+1=0相切,则圆C的方程为
 

查看答案和解析>>

同步练习册答案