精英家教网 > 高中数学 > 题目详情
已知
a
b
c
在同一平面内,且
a
=(-1,2).
(1)若
c
=(m-1,3m),且
c
a
,求m的值;
(2)若|
a
-
b
|=3,且(
a
+2
b
)⊥(2
a
-
b
),求
a
-
b
b
的夹角.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用向量共线定理即可得出.
(2)利用向量垂直与数量积的关系、向量的夹角公式即可得出.
解答: 解:(1)由
c
a

∴2(m-1)+3m=0,解得m=
2
5

(2)∵
a
=(-1,2),∴|
a
|=
5

∵(
a
+2
b
)⊥(2
a
-
b
),∴(
a
+2
b
)•(2
a
-
b
)=0,
化为2
a
2
+3
a
b
-2
b
2
=0,∴10+3
a
b
-2
b
2
=0,
由|
a
-
b
|=3,得
a
2
-2
a
b
+
b
2
=9,即-2
a
b
+
b
2
=4,
解之得,
a
b
=2,
b
2
=8.
a
-
b
b
的夹角为θ.
则cosθ=
(
a
-
b
)•
b
|
a
-
b
| |
b
|
=
a
b
-
b
2
|
a
-
b
| |
b
|
=
2-8
3×2
2
=-
2
2

又θ∈[0,π],∴θ=
4

a
-
b
b
的夹角为
4
点评:本题考查了向量共线定理、量垂直与数量积的关系、向量的夹角公式,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a2=-
1
7
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(1)求a1的值;
(2)求证:数列{
1
an
+(-1)n}是等比数列;
(3)设cn=ansin
(2n-1)π
2
,数列{cn}的前n项和为Tn.求证:对任意的n∈N*,Tn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AA1=8,AC=AB=5,BC=6,点A1在底面ABC的投影是线段BC的中点O,在侧棱AA1上存在一点E,且OE⊥B1C.
(1)证明:OE⊥面BB1C1C.
(2)求出AE的长;
(3)求二面角A1-B1C-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y2=2x(y≥0),A1(x1,y1),A2(x2,y2),…An(xn,yn)…是曲线C上的点,且满足0<x1<x2<…<xn<…,一列点Bi(ai,0)(i=1,2,…)在x轴上,且△Bi-1AiBi(B0是坐标原点)是以Ai为直角顶点的等腰直角三角形.
(Ⅰ)求A1、B1的坐标;
(Ⅱ)求数列{yn}的通项公式;
(Ⅲ)令bi=
1
a
,ci=
(
2
)-yi
2
,是否存在正整数N,当n≥N时,都有
n
i=1
bi
n
i=1
ci
,若存在,求出N的最小值并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*),数列{bn}满足bn=2nan
(Ⅰ)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)设cn=log2
n
an
,数列{
2
cncn+2
}的前n项和为Tn,求满足Tn
25
21
(n∈N*)的n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件求圆锥曲线的标准方程.
(1)已知椭圆的两个焦点坐标分别是(2,0),(-2,0),并且经过点(
5
2
,-
3
2
);
(2)离心率是e=
2
,经过点M(-5,3)的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
a
b
满足(2
a
-3
b
)•(2
a
+
b
)=3
(Ⅰ)求
a
b

(Ⅱ)求|2
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c是正实数,u=
c
a+2b
+
a
b+2c
+
b
c+2a
,则u的最小值为
 

查看答案和解析>>

同步练习册答案