精英家教网 > 高中数学 > 题目详情
精英家教网如图,直三棱柱ABC-A1B1C1中,AB=AC=
12
AA1,∠BAC=90°,D为棱BB1的中点
(Ⅰ)求异面直线C1D与A1C所成的角;
(Ⅱ)求证:平面A1DC⊥平面ADC.
分析:解法一:在含有直线与平面垂直垂直的条件的棱柱、棱锥、棱台中,也可以建立空间直角坐标系,设定参量求解.这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.设AB=a,则A1(0,0,2a),C(0,a,0),C1(0,a,2a),D(a,0,a)
(Ⅰ)
C1D
=(a,-a,-a),
A1C
=(0,a,-2a)
(Ⅱ)又∵
A1D
=(a,0,-a),
AC
=(0,a,0),∴
A1D
AD
A1D
AC
,∴A1D⊥平面ACD
解法二:
(Ⅰ)求异面直线所成的角,可用几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.连接AC1交A1C于点E,取AD中点F,连接EF,则EF∥C1D,∴直线EF与A1C所成的角就是异面直线C1D与A1C所成的角.
(Ⅱ)欲证平面A1DC⊥平面ADC,先证直线与平面垂直,由题意可得:AC⊥A1D,AD⊥A1D,∴A1D⊥平面ACD,又A1D?平面A1CD,∴平面A1DC⊥平面ADC
解答:解:解法一:(Ⅰ)建立如图所示的空间直角坐标系设AB=a,
则A1(0,0,2a),C(0,a,0),C1(0,a,2a),D(a,0,a)(2分)
于是
C1D
=(a,-a,-a),
A1C
=(0,a,-2a)
∵cos<
C1D
A1C
>=
C1D
A1C
|
C1D
|| 
A1C
|
=
0-a2+2a2
3
a•
5
a
=
15
15
,(6分)
∴异面直线C1D与A1C所成的角为arccos
15
15
(7分)
(Ⅱ)∵
A1D
=(a,0,-a),
AC
=(0,a,0),
A1D
AD
=a2+0-a2=0,
A1D
AC
=0(10分)
A1D
AD
A1D
AC

∴A1D⊥平面ACD(12分)
又A1D?平面A1CD,
∴平面A1DC⊥平面ADC(14分)
解法二:
(Ⅰ)连接AC1交A1C于点E,取AD中点F,连接EF,则EF∥C1D
∴直线EF与A1C所成的角就是异面直线C1D与A1C所成的角(2分)
设AB=a,
则C1D=
C1B12+B1D2
=
3
a,
A1C=
AC2AA12
=
5
a,AD=
AB2+BD2
=
2
a.
△CEF中,CE=
1
2
A1C=
5
2
a,EF=
1
2
C1D=
3
2
a,
直三棱柱中,∠BAC=90°,则AD⊥AC(4分)
CF=
AC2+AF2
=
a2+(
2
a
2
)
2
=
6
2
a(4分)
∵cos∠CEF=
CE2+EF2-CF2
2CE•EF
=
5
4
a2+
3
4
a2-
3
2
a2 
2•
5
2
a•
3
2
a
=
15
15
,(6分)
∴异面直线C1D与A1C所成的角为arccos
15
15
(7分)
(Ⅱ)直三棱柱中,∠BAC=90°,∴AC⊥平面ABB1A1,则AC⊥A1D(9分)
又AD=
2
a,A1D=
2
a,AA1=2a,
则AD2+A1D2=AA12,于是AD⊥A1D(12分)
∴A1D⊥平面ACD又A1D?平面A1CD,
∴平面A1DC⊥平面ADC(14分)
点评:本小题主要考查空间线面关系、面面关系、二面角的度量,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案