精英家教网 > 高中数学 > 题目详情
14.考察下列每组对象:
①非常大的正整数全体;
②小于100的所有整数;
③某校2014年秋季入学的所有长头发同学;
④平面直角坐标系第一象限内的所有点;
⑤大于0且小于1的所有无理数.
其中能构成集合的个数为(  )
A.1B.2C.3D.4

分析 利用集合的含义与性质即可判断出.

解答 解:①非常大的正整数意义不明确,因此不能构成集合;
②小于100的所有整数,意义明确,可以构成集合;
③某校2014年秋季入学的所有长头发同学意义不明确,因此不能构成集合;
④平面直角坐标系第一象限内的所有点,可以构成集合;
⑤大于0且小于1的所有无理数可以构成集合.
其中能构成集合的个数为为3.
故选:C.

点评 本题考查了集合的含义,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.lg(lne)+log2(2•lg10)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知设函数f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x+4.
(1)求f(x)的解析式;
(2)用分段函数表示y=f(|x|),并求该函数在区间[-3,2]上的值域;
(3)若函数y=f(|x|)(x∈[-3,2])与y=m的图象有且只有一个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\overrightarrow{O{Z}_{1}}$对应的复数是5-6i,向量$\overrightarrow{O{Z}_{2}}$对应的复数是-6+4i,则$\overrightarrow{O{Z}_{1}}$$+\overrightarrow{O{Z}_{2}}$对应的复数是-1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.C32+C42+C52+…+C192=1139.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.化简$\frac{{\sqrt{1-{{sin}^2}α}}}{cosα}+\frac{sinα}{{\sqrt{1-{{cos}^2}α}}}$=(α为第二象限的角)(  )
A.2B.0C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}sinωxcosωx+{cos^2}ωx-\frac{3}{2}$(ω>0),其最小正周期为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上个点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间$[{\left.{0,\frac{π}{2}}]}$上有且只有两个实数解,求实数k的取值范围.
(3)若不等式$|{f(x)-m}|<1在x∈[{\left.{0,\frac{π}{4}}]}$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$+2$\overrightarrow{b}$=(4,5),则sinθ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式组$\left\{{\begin{array}{l}{3x-y-3≥0}\\{x-2y-1≤0}\\{2x+y-7≤0}\end{array}}\right.$表示的区域为D,
(1)在坐标系中作出区域D(用阴影部分表示);
(2)若在可行域D内,使目标函数z=kx-y的取得最小值的最优解有无数个,求实数k的取值范围.

查看答案和解析>>

同步练习册答案