精英家教网 > 高中数学 > 题目详情
精英家教网已知函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2-2x,
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象.
分析:(1)根据函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2-2x,我们根据定义域为R的奇函数的图象必过原点,则f(-x)=-f(x),即可求出函数f(x)在R上的解析式;
(2)根据(1)中分段函数的解析式,我们易画出函数f(x)的图象.
解答:解:(1)①当x=0时,f(0)=0;(2分)
②当x<0时,-x>0,
∵f(x)是奇函数,
∴f(-x)=-f(x)
∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x(5分)
综上:f(x)=
x2-2x
0
-x2-2x
x>0
x=0
x<0
(2分)
(2)函数f(x)=
x2-2x
0
-x2-2x
x>0
x=0
x<0
的图象如下图所示:
精英家教网(6分)
点评:本题考查的知识点是函数奇偶性的性质及函数的图象,其中根据函数奇偶性的性质,求出函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为曲线C.
(1)求函数f(x)的单调区间;
(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+ln
x
2-x
(0<x<2).
(1)试问f(x)+f(2-x)的值是否为定值?若是,求出该定值;若不是请,说明理由;
(2)定义Sn=
2n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+
f(
2n-1
n
)
,其中n∈N*,求S2013
(3)在(2)的条件下,令Sn+1=2an,若不等式2an(an)m>1对?n∈N*且n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-|2x-a|,a∈R.
(I)当a=5时,求不等式f(x)≥3x-2的解集.
(II)求证:函数f(x)=1-|2x-a|的最大值恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

同步练习册答案