精英家教网 > 高中数学 > 题目详情
如图,矩形中,上的点,且,AC、BD交于点G.

(1)求证:
(2)求证;
(3)求三棱锥的体积.
(1)利用线线垂直证明线面垂直;(2)利用线线平行证明线面平行;(3).

试题分析:(1)证明:

 AE平面ABE,   ∴  2分
,∴   3分
又∵BC∩BF=B,
   ..4分
(2)证明:依题意可知:中点.

,而
中点,
∴ 在中,,    6分
又∵FG平面BFD,AE平面BFD,
     8分
(3)解:, ∴,而
,即   .9分
中点,中点, ∴.
又知在中,
     11分
.     .12分
点评:在求几何体的体积时,当所给的几何体为“规则”的柱体、椎体或台体时,直接利用公式求解.当所给几何体的体积不能直接运用公式求解时,常利用转换法、分割法、补形法等方法
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设x、y、z是空间中不同的直线或平面,对下列四种情形:
①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面,其中使“x⊥z且y⊥z⇒x∥y”为真命题的是  (     )
A.③④B.①③
C.②③D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体的棱长为1,分别为线段上的动点,则三棱锥的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形都是边长为的正方形,点E是的中点,

求证:
求证:平面
求体积的比值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的两条直线,是不重合的两个平面,则下列命题中为真命题的是(  )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱点M,N分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)若二面角A为直二面角,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知:是不同的直线,是不同的平面,给出下列五个命题:
①若垂直于内的两条直线,则
②若,则平行于内的所有直线;
③若
④若
⑤若.其中正确命题的序号是               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(Ⅰ)  求证:平面平面
(Ⅱ)  当,且时,确定点的位置,即求出的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有
(3)当为何值时,与平面所成角的大小为45°.

查看答案和解析>>

同步练习册答案