精英家教网 > 高中数学 > 题目详情
如图,直三棱柱点M,N分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)若二面角A为直二面角,求的值.
(Ⅰ)分别取的中点,再连结,得到
,证得四边形为平行四边形,推出,证得∥平面
(Ⅱ)

试题分析:(Ⅰ)分别取的中点,再连结,则有
,所以
则四边形为平行四边形,所以,则∥平面      4分
(Ⅱ)分别以所在直线为轴,建立空间直角坐标系(如图)
,则,所以平面的一个法向量,平面的一个法向量
因为二面角A为直二面角,所以,则有       12分
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。注意运用转化与化归思想,将空间问题转化成平面问题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列四个命题中,正确命题的个数是(   )
①若   ②若
③若  ④若
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知空间四边形中,的中点.

(Ⅰ)求证:平面CDE;
(Ⅱ)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形中,上的点,且,AC、BD交于点G.

(1)求证:
(2)求证;
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,的中点,,二面角的大小为

(1)证明:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若a、b是异面直线,b、c是异面直线;则a、c的位置关系为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。

(1)当M在什么位置时,,请给出证明;
(2)若直线MN与平面ABN所成角的大小为,求的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在长方形ABCD中,AB=BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当ED运动到C,则K所形成轨迹的长度为   (   )
         
A.B.C.D.

查看答案和解析>>

同步练习册答案