精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=$\left\{\begin{array}{l}{a+b{x}^{2},x≤0}\\{ln(1+bx)^{\frac{1}{x},x>0}}\end{array}\right.$,在x=0处连续,则常数a,b应满足(  )
A.a<bB.a=bC.a>bD.a≠b

分析 若函数f(x)=$\left\{\begin{array}{l}{a+b{x}^{2},x≤0}\\{ln(1+bx)^{\frac{1}{x},x>0}}\end{array}\right.$,在x=0处连续,$\lim_{x→{0}^{+}}ln{(1+bx)}^{\frac{1}{x}}$=a,计算出极限值,可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{a+b{x}^{2},x≤0}\\{ln(1+bx)^{\frac{1}{x},x>0}}\end{array}\right.$,在x=0处连续,
∴$\lim_{x→{0}^{+}}ln{(1+bx)}^{\frac{1}{x}}$=b=a,
故选:B.

点评 本题考查的知识点是函数的连续性,极限运算,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如表:
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为$\frac{2}{5}$
患心肺疾病不患心肺疾病合计
大于40岁16
小于等于40岁12
合计40
(1)请将2×2列联表补充完整;
(3)能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.正方体ABCD-A1B1C1D1的棱长为1,点P,Q,R分别是棱A1A,A1B1,A1D1的中点,以△PQR为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.C${\;}_{n}^{0}$+3C${\;}_{n}^{1}$+5C${\;}_{n}^{2}$+…+(2n+1)C${\;}_{n}^{n}$=(n+1)•2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知g(x)=$\frac{1}{x}$,f(x)=2x+1,x∈(-1,2),求f[g(x)]的定义域?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正四面体ABCD的棱长为1,如果一高为$\frac{{\sqrt{3}}}{6}$的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形面积的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某学校高中有900人,其中高一有400人,现采用分层抽样的方法抽取一容量为45人的样本,已知从高二抽得15人,则从高三抽取的人数为(  )
A.5B.10C.15D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个容量为20的样本数据,分组后,组距与频数如下,
组距(10,20](20,30](30,40](40,50](50,60](60,70]
频数234542
则样本在(10,50]上的频率为(  )
A.$\frac{1}{20}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,S11=22,a4=-12,若am=30,则 m=(  )
A.9B.10C.11D.15

查看答案和解析>>

同步练习册答案