| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 分别取过C点的三条面对角线的中点,则此三点为棱柱的另一个底面的三个顶点,利用中位线定理证明.于是三棱柱的高为正方体体对角线的一半.
解答
解:连结A1C,AC,B1C,D1C,
分别取AC,B1C,D1C的中点E,F,G,连结EF,EG,FG.
由中位线定理可得PE$\frac{∥}{=}$A1C,QF$\frac{∥}{=}$A1C,RG$\frac{∥}{=}$A1C.
又A1C⊥平面PQR,∴三棱柱PQR-EFG是正三棱柱.
∴三棱柱的高h=PE=$\frac{1}{2}$A1C=$\frac{\sqrt{3}}{2}$.
故选:D.
点评 本题考查了正棱柱的结构特征,作出三棱柱的底面是计算棱柱高的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ③①② | C. | ②③① | D. | ②①③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b | B. | a=b | C. | a>b | D. | a≠b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com