【题目】已知函数
,其中
为自然对数的底数.
(Ⅰ)试判断函数
的单调性;
(Ⅱ)当
时,不等式
恒成立,求实数
的取值范围.
【答案】(Ⅰ)见解析; (Ⅱ) ![]()
【解析】
(Ⅰ)求出原函数的导函数,然后对a分类,当a≤0时,
<0,f(x)为R上的减函数;当a>0时,由导函数为0求得导函数的零点,再由导函数的零点对定义域分段,根据导函数在各段内的符号得到原函数的单调性;
(Ⅱ)分离参数t,可得
恒成立.令
,则问题等价于求解函数g(x)的最小值,然后利用导数分析求解函数g(x)的最小值得答案.
(Ⅰ)由题可得函数
的定义域为
,
,
当
时,因为
,所以
,所以函数
在
上单调递减;
当
时,令
,解得
;令
,解得
,
所以函数
在
上单调递减,在
上单调递增.
综上,当
时,函数
在
上单调递减;当
时,函数
在
上单调递减,在
上单调递增.
(Ⅱ)当
时,
,
则不等式
可化为
,
因为不等式
恒成立,所以原问题可转化为
.
设
,显然函数
的定义域为
,
,
令
,则
恒成立,
所以函数
在
上单调递增,
又
,所以当
时,
;当
时,
,
所以函数
在
上单调递减,在
上单调递增,
所以
,所以
,
故实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知点
,圆
,点
是圆上一动点,
的垂直平分线与
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的体积为
,则三棱锥P-ABC表面积为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:
![]()
(Ⅰ)求
,并试估计这200盒产品的该项指标的平均值;
(Ⅱ)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中
为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.
①求产品该项指标值的优秀率;
②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知动直线
的参数方程:
,(
为参数,
) ,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
恰好有2个公共点时,求直线
的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,
得到如图所示的频率分布直方图.
![]()
(Ⅰ)求
的值;
(Ⅱ)记
表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80分”,估计
的概率;
(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请在答题卡上将
列联表补充完整,并判断是否有
的把握认为“比赛成绩是否优秀与性别有关”?
参考公式及数据:
,
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国改革开放以来经济发展迅猛,某一线城市的城镇居民2012~2018年人均可支配月收入散点图如下(年份均用末位数字减1表示).
![]()
(1)由散点图可知,人均可支配月收入y(万元)与年份x之间具有较强的线性相关关系,试求y关于x的回归方程(系数精确到0.001),依此相关关系预测2019年该城市人均可支配月收入;
(2)在2014~2018年的五个年份中随机抽取两个数据作样本分析,求所取的两个数据中,人均可支配月收入恰好有一个超过1万元的概率.
注:
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新年伊始,新型冠状病毒来势汹汹,疫情使得各地学生在寒假结束之后无法返校,教育部就此提出了线上教学和远程教学,停课不停学的要求也得到了家长们的赞同.各地学校开展各式各样的线上教学,某地学校为了加强学生爱国教育,拟开设国学课,为了了解学生喜欢国学是否与性别有关,该学校对100名学生进行了问卷调查,得到如下列联表:
喜欢国学 | 不喜欢国学 | 合计 | |
男生 | 20 | 50 | |
女生 | 10 | ||
合计 | 100 |
(1)请将上述列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系?
(2)针对问卷调查的100名学生,学校决定从喜欢国学的人中按分层抽样的方法随机抽取6人成立国学宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中女生人数为
,求
的分布列和数学期望.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四位数
和
互为反序的正整数,且
,
、
分别有16个、12个正因数(包括1和本身),
的质因数也是
的质因数,但
的质因数比
的质因数少1个,求
的所有可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com