精英家教网 > 高中数学 > 题目详情
20.若f(x)满足关系式f(x)+2f($\frac{1}{x}$)=3x,则f(-2)的值为(  )
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

分析 由已知得$\left\{\begin{array}{l}{f(x)+2f(\frac{1}{x})=3x}\\{f(\frac{1}{x})+2f(x)=\frac{3}{x}}\end{array}\right.$,从而求出$f(x)=\frac{2}{x}-x$,由此能求出f(-2)的值.

解答 解:∵f(x)满足关系式f(x)+2f($\frac{1}{x}$)=3x,
∴$\left\{\begin{array}{l}{f(x)+2f(\frac{1}{x})=3x}\\{f(\frac{1}{x})+2f(x)=\frac{3}{x}}\end{array}\right.$,
解得$f(x)=\frac{2}{x}-x$,
∴f(-2)=$\frac{2}{-2}-(-2)$=1.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.关于x的方程(2017-x)(1999+x)=2016恰有两个根为x1、x2,且x1、x2分别满足3x1=a-3x1和log3(x2-1)3=a-3x2,则x1+x2+a=61.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an},{bn}满足a1=1且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b9等于(  )
A.64B.48C.32D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列梯形的面积,上底为a,下底为b,高为h,请写出该问题的算法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足i•z=1+2i(其中i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:
①f(x)在[a,b]上是单调函数;
②f(x)在[a,b]上的值域是[2a,2b],则称区间[a,b]是函数f(x)的“和谐区间”.
下列结论错误的是(  )
A.函数f(x)=x2(x≥0)存在“和谐区间”B.函数f(x)=2x(x∈R)存在“和谐区间”
C.函数f(x)=$\frac{1}{{x}^{2}}$(x>0)不存在“和谐区间”D.函数f(x)=log2x(x>0)存在“和谐区间”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={1,2,3,4,5,6,7},命题p:?n∈M,n>1,则(  )
A.¬p:?n∈M,n≤1B.¬p:?n∈M,n>1C.¬p:?n∈M,n>1D.¬p:?n∈M,n≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.比较$\frac{{a}^{2}+{b}^{2}}{2}$与($\frac{a+b}{2}$)2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,已知动点T到点A(-4,0),B(-1,0)的距离比为2.
(1)求动点T的轨迹方程Γ;
(2)已知点P是直线l:y=x与曲线Γ在第一象限内的交点,过点P引两条直线分别交曲线Γ于Q,R,且直线PQ,PR的倾斜角互补,试判断直线QR的斜率是否为定值,若是定值,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案