| A. | 64 | B. | 48 | C. | 32 | D. | 24 |
分析 由根与系数关系得到an•an+1=2n,以n+1替换n后再得一式,两式相除,可得数列{an}中奇数项成等比数列,偶数项也成等比数列,求出a9,a10后,可求b9.
解答 解:由已知得,an•an+1=2n,
∴an+1•an+2=2n+1,
两式相除得$\frac{{a}_{n+2}}{{a}_{n}}$=2.
∴a1,a3,a5,…成等比数列,a2,a4,a6,…成等比数列.
而a1=1,a2=2,a9=1×24=16,
∴a10=2×24=32,
又an+an+1=bn,所以b9=a9+a10=48.
故选:B.
点评 本题考查了韦达定理的应用,等比数列的判定及通项公式求解,考查转化、构造、计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | C. | f(1)<2f($\frac{π}{6}$)sin1 | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 5 | C. | -1 | D. | 2π-5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com