| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 写出原命题的否定,可判断①;根据函数零点的存在定理,可判断②;求出满足条件的公差,可判断③;根据三角函数的单调性,可判断④
解答 解:①命题“存在x∈R,x2-x>0”的否定是“对于任意的x∈R,x2-x≤0”;故错误;
②若函数f(x)在(2016,2017)上有零点,则f(2016)•f(2017)<0不一定成立,故错误;
③在公差为d的等差数列{an}中,a1=2,a1,a3,a4成等比数列,则(2+2d)2=2(2+3d),
解得:d=-$\frac{1}{2}$,或d=0,故错误;
④函数y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]时,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],令2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{π}{2}$],
解得:x∈[0,$\frac{π}{8}$].即在[0,$\frac{π}{2}$]上函数y=sin2x+cos2x的单调递增区间为[0,$\frac{π}{8}$].故正确;
故选:B.
点评 本题以命题的真假判断应用为载体,考查了特称命题,函数的零点,数列,三角函数的单调性等知识点,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | x-y-6=0 | B. | x+y+6=0 | C. | x-y+6=0 | D. | x+y-6=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x≤3} | B. | {x|1≤x≤3} | C. | {x|0≤x≤3} | D. | {x|1<x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | 48 | C. | 32 | D. | 24 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com