精英家教网 > 高中数学 > 题目详情
(2012•武昌区模拟)已知函数f(x)=
px-p
-lnx(p>0)

(Ⅰ)若函数f(x)在定义域内为增函数,求实数P的取值范围;
(Ⅱ)当n∈N*时,试判断
n
i=1
2k+1
k
与2ln(n+1)的大小关系,并证明你的结论;
(Ⅲ) 当n≥2且n∈N*时,证明:
n
i=2
1
lnk
>lnn
分析:(Ⅰ)要使函数f(x)在定义域内为增函数,只需f′(x)≥0在定义域恒成立,从而可求出p的值;
(Ⅱ)欲证 
n
i=1
2k+1
k
>2ln(n+1),只需证
2k+1
k
>2[ln(k+1)-lnk](k∈N*),分别取k=1,2,3,…,n,并将同向不等式相加可得结论;
(Ⅲ)先证
1
k-1
>ln(1+
1
k-1
),从而可得
1
lnk
>lnk-ln(k-1),再分别取k=2,3,4,…,n,并将同向不等式相加,可得结论.
解答:(本小题满分14分)
解:(Ⅰ)p>0,函数f(x)=
px-p
-lnx(p>0)
定义域为[1,+∞).
f′(x)=
p
2
px-p
-
1
x

依题意,
p
2
px-p
1
x
在x∈(1,+∞)恒成立,∴p≥
4(x-1)
x2
在x∈(1,+∞)恒成立.
4(x-1)
x2
=4[-(
1
x
-
1
2
2+
1
4
]≤1,
∴p≥1,∴p的取值范围为[1,+∞).…(4分)
(Ⅱ)证明:当n∈N*时,欲证 
n
i=1
2k+1
k
>2ln(n+1),只需证
2k+1
k
>2[ln(k+1)-lnk](k∈N*).
由(Ⅰ)可知:取p=1,则f(x)≥f(1)(x≥1),
而f(1)=0,∴
x-1
≥lnx(当x=1时,等号成立).
(
x+1
x
)
2
代换x,得
(
x+1
x
)
2
-1
>ln(
x+1
x
)
2
(x>0),即
2x+1
x
>2[ln(x+1)-lnx](x>0).,
2k+1
k
>2[ln(k+1)-lnk](k∈N*).
在上式中分别取k=1,2,3,…,n,并将同向不等式相加,得
n
i=1
2k+1
k
>2ln(n+1).
∴当n∈N*时,
n
i=1
2k+1
k
>2ln(n+1).…(9分)
(Ⅲ)由(Ⅱ)可知
x-1
≥lnx(x=1时,等号成立).
而当x≥2时:x-1≥
x-1
,∴当x≥2时,x-1>lnx.
设g(x)=x-1-lnx,x∈(0,2),则g′(x)=1-
1
x
=
x-1
x

∴g(x)在(0,1)上递减,在(1,2)上递增,
∴g(x)≥g(1)=0,即x-1≥lnx在x∈(0,2)时恒成立.
故当x∈(0,+∞)时,x-1≥lnx(当且仅当x=1时,等号成立).…①
用x代换x-1得:x≥ln(1+x)(当且仅当1=0时,等号成立).…②
当k≥2,k∈N*时,由①得k-1>lnk>0,∴
1
lnk
1
k-1

当k≥2,k∈N*时,由②得 k>ln(1+k),用
1
k-1
代换k,得
1
k-1
>ln(1+
1
k-1
).
∴当k≥2,k∈N*时,
1
lnk
>ln(1+
1
k-1
).即
1
lnk
>lnk-ln(k-1).
在上式中分别取k=2,3,4,…,n,并将同向不等式相加,得
n
i=2
1
lnk
>lnn-ln1

故当n≥2且n∈N*时,
n
i=2
1
lnk
>lnn
.…(14分)
点评:本题主要考查了利用导数研究函数的单调性,以及数列与不等式的综合,同时考查了转化的思想和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武昌区模拟)已知数列{an},{bn}满足:a1=3,当n≥2时,an-1+an=4n;对于任意的正整数n,b1+2b2+…+2n-1bn=nan.设{bn}的前n项和为Sn
(Ⅰ)计算a2,a3,并求数列{an}的通项公式;
(Ⅱ)求满足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)在圆x2+y2=4上,与直线l:4x+3y-12=0的距离最小值是
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是线段PD上的点,F是线段AB上的点,且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)当λ=1时,证明DF⊥平面PAC;
(Ⅱ)是否存在实数λ,使异面直线EF与CD所成的角为60°?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)设fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角变换,估计fk(x)在k=l,2,3时的取值情况,对k∈N*时推测fk(x)的取值范围是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(结果用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)2011年武汉电视台问政直播节日首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 一般 不满意
A部门 50% 25% 25%
B部门 80% 0 20%
C部门 50% 50% 0
D部门 40% 20% 40%
(I)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(11)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.

查看答案和解析>>

同步练习册答案