10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ²¢È¡ÏàͬµÄµ¥Î»³¤¶È£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©°ÑÇúÏßC1µÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬C2µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1£¬C2ÏཻÓÚA£¬BÁ½µã£¬ABµÄÖеãΪP£¬¹ýµãP×öÇúÏßC2µÄ´¹Ïß½»ÇúÏßC1ÓÚE£¬FÁ½µã£¬Çó|PE|•|PF|£®

·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¼´¿ÉµÃ³ö£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®Õ¹¿ªÎª$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È-¦Ñsin¦È£©=$\frac{\sqrt{2}}{2}$£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{x=¦Ñcos¦È}\end{array}\right.$¼´¿ÉµÃ³ö£®
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÒÖеãΪP£¨x0£¬y0£©£¬ÁªÁ¢Å×ÎïÏßÓëÖ±Ïߵķ½³Ì¿ÉµÃx2-6x+1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½¿ÉµÃx0=$\frac{{x}_{1}+{x}_{2}}{2}$=3£¬y0=2£®½ø¶øµãµ½Ïß¶ÎABµÄÖд¹ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÅ×ÎïÏß·½³Ì£¬ÀûÓòÎÊýµÄÒâÒå¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¿ÉµÃy2=4x£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®Õ¹¿ªÎª$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È-¦Ñsin¦È£©=$\frac{\sqrt{2}}{2}$£¬»¯Îªx-y-1=0£®
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÒÖеãΪP£¨x0£¬y0£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x-y-1=0}\end{array}\right.$£¬½âµÃx2-6x+1=0£¬
¡àx1+x2=6£¬x1x2=1£®
¡àx0=$\frac{{x}_{1}+{x}_{2}}{2}$=3£¬y0=2£®
Ïß¶ÎABµÄÖд¹ÏߵIJÎÊý·½³ÌΪΪ$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëy2=4x£¬¿ÉµÃt2+8$\sqrt{2}$t-16=0£¬
¡àt1t2=-16£¬
¡à|PE|•|PF|=|t1t2|=16£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢²ÎÊýµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨2m£¬4£©£¬\overrightarrow b=£¨m-1£¬-1£©$£¬Èô$\overrightarrow a¡Í\overrightarrow b$£¬ÔòʵÊýmµÄֵΪ2»ò-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèµÈ²îÊýÁÐ{an}Âú×㣺$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin£¨{a_4}+{a_5}£©}}=1$£¬¹«²î$d¡Ê£¨-\frac{1}{2}£¬0£©$Èôµ±ÇÒ½öµ±n=11ʱ£¬ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óÖµ£¬ÔòÊ×Ïîa1µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨\frac{10}{11}¦Ð£¬¦Ð£©$B£®$[\frac{10}{11}¦Ð£¬¦Ð£©$C£®$[¦Ð£¬\frac{11}{10}¦Ð£©$D£®$£¨¦Ð£¬\frac{11}{10}¦Ð£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÊÇ·ñ´æÔÚÈý½ÇÐÎÂú×ãÒÔÏÂÁ½¸öÐÔÖÊ£º
£¨1£©Èý±ßÊÇÁ¬ÐøµÄÈý¸ö×ÔÈ»Êý£»
£¨2£©×î´ó½ÇÊÇ×îС½ÇµÄ2±¶£®Èô´æÔÚ£¬Çó³ö¸ÃÈý½ÇÐΣ»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®i2015µÄֵΪ£¨¡¡¡¡£©
A£®iB£®-1C£®-iD£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÔÚ¡÷ABCÖУ¬Èô¦ÁcosA+bcosB=ccosC£¬ÔòÕâ¸öÈý½ÇÐÎÒ»¶¨ÊÇ£¨¡¡¡¡£©
A£®Èñ½ÇÈý½ÇÐλò¶Û½ÇÈý½ÇÐÎB£®ÒÔa»òbΪб±ßµÄÖ±½ÇÈý½ÇÐÎ
C£®ÒÔcΪб±ßµÄÖ±½ÇÈý½ÇÐÎD£®µÈ±ßÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ¼«×ø±êϵÖУ¬Ô²AµÄ·½³ÌΪ¦Ñ=4cos¦È£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-2t}\\{y=-1+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔòÔ²AµÄÔ²Ðĵ½ÇúÏßCµÄ¾àÀëÊÇ$\frac{3\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªm£¾0ÇÒ|x+1|+|2x-1|¡Ýmºã³ÉÁ¢£¬a£¬b£¬c¡ÊRÂú×ãa2+2b2+3c2=m£®Ôòa+2b+3cµÄ×îСֵΪ-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}£¨4-\frac{a}{2}£©x+2£¬x¡Ü1\\ ax£¬x£¾1\end{array}$ÊÇRÉϵĵ¥µ÷µÝÔöº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨1£¬8£©C£®£¨4£¬8£©D£®[4£¬8£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸